Advertisement

Carbon Sequestration in Mediterranean Oak Forests

  • Isabel Cañellas
  • Mariola Sánchez-González
  • Stella M. Bogino
  • Patricia Adame
  • Daniel Moreno-Fernández
  • Celia Herrero
  • Sonia Roig
  • Margarida Tomé
  • Joana A. Paulo
  • Felipe Bravo
Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 34)

Abstract

Management objectives and techniques in woodlands dominated by Quercus species have changed dramatically over the last few decades, especially in the case of coppices. The fact that these stands are of little economic importance today is in part compensated by their value, for example, as carbon sinks. The identification of this important role of Quercus woodlands allows us to contemplate the development of specific silviculture and to promote investment in the stands. It is also important, in the context of global change, to analyze the dynamics involved in the transformation of Quercus woodlands from carbon sinks to emitters.

Keywords

Carbon Sequestration Carbon Stock Mixed Stand Yield Table Crown Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adame P, Cañellas I, Roig S, del Rio M (2006) Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Ann For Sci 63:929–940CrossRefGoogle Scholar
  2. AFN (2010) Inventário Florestal Nacional Portugal Continental IFN5, 2005–2006. Autoridade Florestal Nacional, Lisboa, 209 ppGoogle Scholar
  3. AIFF (2013) Estudo prospetivo para o setor florestal. Relatório final. Associação para a competitividade da indústria da fileira florestal. 255 ppGoogle Scholar
  4. Cañellas I, Martínez F, Montero G (2000) Silviculture and dynamics of Pinus sylvestris L.stands in Spain. Investigación Agraria. Sistemas y recursos forestales Fuera de serie, pp. 233–254Google Scholar
  5. Cañellas I, del Río M, Roig S, Montero G (2004) Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain. Ann For Sci 61:243–250CrossRefGoogle Scholar
  6. Cañellas I, Sánchez-González M, Bogino SM, Adame P, Herrero C, Roig S, Tomé M, Paulo JA, Bravo F (2008) Silviculture and carbon sequestration in Mediterranean Oak forests. In: Bravo F et al (eds) Managing forest ecosystems: the challenge of climate change. Springer, Dordrecht/LondonGoogle Scholar
  7. Coelho MB, Godinho JM (2002) SUBER DATA 2 – Base de dados de sobreiro –Manual para o utilizador, Publicações GIMREF – RT8/2002. Departamento de Engenharia Florestal, Instituto Superior de Agronomia, LisboaGoogle Scholar
  8. Coelho MB, Paulo JA, Palma JHN, Tomé M (2012) Contribution of cork oak plantations installed after 1990 in Portugal to the Kyoto commitments and to the landowners economy. Forest Policy Econ 17:59–68 doi:  http://dx.doi.org/10.1016/j.forpol.2011.10.005 CrossRefGoogle Scholar
  9. DGCN (1996) II Inventario Forestal Nacional 1986–1996. Direccion General de Conservación de la Naturaleza. Ministerio de Medio Ambiente, MadridGoogle Scholar
  10. Elena Roselló R (1997) Clasificación biogeoclimática de España Peninsular y Balear. MAPA, MadridGoogle Scholar
  11. Faias SP, Palma JHN, Barreiro SM, Paulo JA, Tomé M (2012) Resource communication. sIMfLOR – platform for the Portuguese forest simulators. For Syst 21(3):543–548  http://dx.doi.org/10.5424/fs/2012213-02951 Google Scholar
  12. Gil, L., Pereira, C., Silva, P. (2005) Cork and CO2 fixation. In: Proceedings of SUBERWOOD: New challenges for integration of cork oak forests and products, Universidad de Huelva, Huelva, 20–22 de octubre de 2005Google Scholar
  13. Ibáñez JJ, Vayreda J, Gracia C (2002) Metodología complementaria al Inventario Forestal Nacional en Catalunya. In: Bravo F, del Río M, del Peso C (eds) El Inventario Forestal Nacional. Elemento clave para la gestión forestal sostenible. Fundación General de la Universidad de Valladolid, Valladolid, pp. 67–77Google Scholar
  14. ICONA 1998 Segundo Inventario Forestal Nacional, España. Ministerio de Medio Ambiente, Dirección General de Conservación de la Naturaleza. 337pGoogle Scholar
  15. IPCC (2007) Intergovernmental Panel on Climate Change 2007. www. ipcc2007 ipcc2007Google Scholar
  16. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22CrossRefGoogle Scholar
  17. Masera O, Garza-Caligaris F, Kanninen M, Karjalainen T, Liski J, Nabuurs G, Pussinen A, De Jong B, Mohren G (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecol Model 164:177–199CrossRefGoogle Scholar
  18. Ministerio de Medio Ambiente, Universidad de Castilla-La Mancha (2005) Evaluación preliminar de los impactos en España por el efecto del cambio climático. p. 846Google Scholar
  19. Montero G, Cañellas I (1999) Manual de forestación del alcornoque (Quercus suber L.). MAPA-INIA. 103 pGoogle Scholar
  20. Montero G, Cañellas I, Ruíz-Peinado R (2001) Growth and yield models for Pinus halepensis Mill. Investigación Agraria Sistemas y Recursos Forestales 10:179–201Google Scholar
  21. Montero, G., Ruiz-Peinado, R., Muñoz, M. (2005) Producción de biomasa y fijación de C02 por los bosques españoles. Monografías INIA: Seria Forestal n° 13. 270 pGoogle Scholar
  22. Nabuurs G, Mohren F, Dolman H (2000) Monitoring and reporting carbon stocks and fluxes in Dutch forests. Biotechnol Agron Soc Environ 4:308–310Google Scholar
  23. Natividade, J. Vieira, 1950. Subericultura. Ministério da Economia, Direcção Geral dos Serviçoes Florestais e Aquícolas Lisboa.Google Scholar
  24. Patenaude G, Hill R, Milne R, Gaveau D, Briggs B, Dawson T (2004) Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sens Environ 93:368–380CrossRefGoogle Scholar
  25. Paulo, J.A. 2011. Desenvolvimento de um sistema para apoio à gestão sustentável de montados de sobro. Tese apresentada para obtenção do grau de Doutor em Engenharia Florestal e dos Recursos Naturais. Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, 188 pp. (http://hdl.handle.net/10400.5/3850)
  26. Paulo JA, Tomé M (2010) Predicting mature cork biomass with t years of growth from one measurement takne at any other age. For Ecol Manag 259:1993–2005  http://dx.doi.org/10.1016/j.foreco.2010.02.010 CrossRefGoogle Scholar
  27. Paulo JA, Faias SP, Tomé M (2012) SUBER v5.0. Manual do utilizador. Publicações FORCHANGE. RT1/2012. Universidade Técnica de Lisboa. Instituto Superior Agronomia. Centro de Estudos Florestais, Lisboa 41 ppGoogle Scholar
  28. Pereira H (2007) Cork: biology, production and uses. Elservier, Amsterdam/London 336 p.Google Scholar
  29. Pignard G, Dupouey J, Arrouays D, Loustau D (2004) Carbon stocks estimates for French forests. Biotechnol Agron Soc Environ 4:285–289Google Scholar
  30. Ruiz-Peinado R, Montero G, del Río M (2012a) New models for estimating the carbon sink capacity of Spanish softwood species. For Syst 20:176–188Google Scholar
  31. Ruiz-Peinado R, Montero G, del Río M (2012b) Biomass models to estimate carbon stocks for hardwood tree species. For Syst 21:42–52Google Scholar
  32. Sánchez M, Cañellas I, Montero G (2008) Base-age invariant cork growth model for Spanish cork oak (Quercus suber L.) forests. Eur J For Res 127(3):173–182CrossRefGoogle Scholar
  33. Sánchez González M, del Río M, Cañellas I, Montero G (2006) Distance independent tree diameter growth model for cork oak stands. For Ecol Manag 225:262–270CrossRefGoogle Scholar
  34. Sánchez-González M, Tomé M, Montero G (2005) Modelling height and diameter growth of dominant cork oak trees in Spain. Ann For Sci 62:633–643CrossRefGoogle Scholar
  35. Sánchez-González M, Cañellas I, Montero G (2007) Base-age invariant cork growth model for Spanish cork oak (Quercus suber L.) forests. Eur J For Res 127(3):173–182CrossRefGoogle Scholar
  36. Tomé, M. (2004) Modelo de crescimento e produção para a gestão do montado de sobro em Portugal. Relatório final do projecto POCTI/AGR/35172/99. Publicações GIMREF RFP 1/2004. Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Centro de Estudos Florestais, Lisboa, Portugal. 89 pp. http://hdl.handle.net/10400.5/2355
  37. Tomé, M., Meyer, A., Ramos, T., Barreiro, S., Faias, S.P., Paulo, J., Cortiçada, A., Correia, A. (2007) Equações para a estimação de variáveis da árvore desenvolvidas no âmbito do tratamento dos dados do Inventário Florestal Nacional 2005–2006. Publicações GIMREF. RT 3/2007. Universidade Técnica de Lisboa. Instituto Superior de Agronomia. Centro de Estudos Florestais. Lisboa, PortugalGoogle Scholar
  38. Torres P (2009) Portuguese National Inventory Report on Greenhouse Gases, 1990–2007. Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Portuguese Environmental Agency, Amadora, 614 ppGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Isabel Cañellas
    • 1
  • Mariola Sánchez-González
    • 1
  • Stella M. Bogino
    • 2
  • Patricia Adame
    • 1
  • Daniel Moreno-Fernández
    • 1
  • Celia Herrero
    • 3
  • Sonia Roig
    • 4
  • Margarida Tomé
    • 5
  • Joana A. Paulo
    • 5
  • Felipe Bravo
    • 6
  1. 1.Joint Research Unit INIA-UVa, Department of Forest Systems and ResourcesCIFOR-INIAMadridSpain
  2. 2.Department of Agricultural SciencesState University of San LuisSan LuisArgentina
  3. 3.Joint Research Unit INIA-UVa, Department of Forest ResourcesUniversidad de ValladolidPalenciaSpain
  4. 4.Department Sistemas y Recursos Naturales, ETS de Ingeniería de Montes, Forestal y Medio NaturalUPMMadridSpain
  5. 5.Instituto Superior de Agronomia, Centro de Estudos FlorestaisUniversity of LisbonLisbonPortugal
  6. 6.ETS de Ingenierías Agrarias - Universidad de Valladolid & iuFOR - Sustainable Forest Management Research InstituteUniversidad de Valladolid - INIAPalenciaSpain

Personalised recommendations