Skip to main content

Forest Carbon Sequestration: The Impact of Forest Management

  • Chapter
  • First Online:
Managing Forest Ecosystems: The Challenge of Climate Change

Abstract

Regardless of their geographical location , forests play an important role in CO2 fixation. Carbon stored in terrestrial ecosystems is distributed among three compartments: living plant biomass (stem, branches, foliage , roots), plant detritus (fallen branches and cones, forest litter, tree stumps, tree tops, logs) and soil (organic mineral humus, surface and deep mineral soil). Trees acquire energy for their living structures through photosynthesis , which requires CO2 captured by stomata in the leaves. Part of the captured CO2 is used to create living biomass, while the remainder is released back into the atmosphere through autotrophic respiration . When leaves or branches die and decompose, they increase soil carbon and also release a small amount into the atmosphere through heterotrophic respiration .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Revised Approved Afforestation and Reforestation Baseline Methodology Case AR-AM00010 Facilitating Reforestation for Guangxi Watershed Management in Pearl River Basin, China” and “Case ARNM0018, Assisting natural regeneration on degraded land in Albania” http://cdm.unfccc.int/methodologies/ARmethodologies/approved_ar.html

References

  • Aponte C, García LV, Marañón T (2013) Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. For Ecol Manag 309:36–46. doi:10.1016/j.foreco.2013.05.035

    Article  Google Scholar 

  • Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford

    Google Scholar 

  • Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1

    Article  Google Scholar 

  • Bellassen V, Luyssaert S (2014) Carbon sequestration: managing forests in uncertain times. Nature 506:153.155. doi:10.1038/506153a

    Article  Google Scholar 

  • Blanco JA, Imbert JB, Castillo FJ (2006) Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For Ecol Manag 237(1–3):342–352

    Article  Google Scholar 

  • Bogino SM, Bravo F (2008) Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forests. Ann For Sci 65(506):1–13. doi:10.1051/forest:2008025

    Google Scholar 

  • Bogino SM, Bravo F (2014) Carbon stable isotope-climate association in tree rings of Pinus pinaster and Pinus sylvestris in Mediterranean environments. Bosque 35(2):175–184

    Article  Google Scholar 

  • Bogino S, Bravo F, Herrero C (2006) Carbon dioxide accumulation by pure and mixed woodlands of Pinus sylvestris L. and Quercus pyrenaica Willd in Central Mountain Range Spain. In: Bravo F (ed) Proceedings of the IUFRO meeting on managing forest ecosystems: the challenges of climate change, Palencia

    Google Scholar 

  • Bogino SM, Fernández-Nieto MJ, Bravo F (2009) Drought index and radial growth of Pinus sylvestris L. in its southern and western distribution threshold. Silva Fennica 43(4):609–623

    Article  Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482

    Article  Google Scholar 

  • Brassard BW, Chen HYH, Cavard X, Laganière J, Reich PB, Bergeron Y, Paré D, Yuan Z (2013) Tree species diversity increases fine root productivity through increased soil volume filling. J Ecol 101:210–219

    Article  Google Scholar 

  • Bravo F, Díaz-Balteiro L (2004) Evaluation of new silvicultural alternatives for Scots pine stands in northern Spain. Ann For Sci 61(2):163–169

    Article  Google Scholar 

  • Bravo F, Herrero C, Ordóñez C, Segur M, Gómez C, Menéndez M, Cámara A (2007) Cuantificación de la fijación de CO2 en la biomasa arbórea de los sistemas forestales españoles. In: Bravo (coord) El papel de los bosques españoles en la mitigación del cambio climático, pp 143–196

    Google Scholar 

  • Bravo F, Bravo-Oviedo A, Díaz-Balteiro L (2008) Carbon sequestration in Spanish Mediterranean forests under two management alternatives: a modeling approach. Eur J For Res 127:225–234

    Article  Google Scholar 

  • Bravo F, Osorio LF, Pando V, del Peso C (2010) Long-term implications of traditional forest regulation methods applied to Maritime pine (Pinus pinaster Ait.) forests in central Spain: a century of management plans. iForest 3:33–38. doi:10.3832/ifor0526-003

  • Bravo-Oviedo A, Ruiz-Peinado R, Modrego P, Alonso R, Montero G (2015) Forest thinning impact on carbon stock and soil condition in Southern European populations of P. sylvestris L. For Ecol Manag 357:259–267. doi:10.1016/j.foreco.2015.08.005

    Article  Google Scholar 

  • Castaño J, Bravo F (2012) Variation in carbon concentration and basic density along stems of sessile oak (Quercus petraea (Matt.) Liebl.) and Pyrenean oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain). Ann For Sci 69(6):663–672. http://dx.doi.org/10.1007/s13595-012-0183-6

  • Chatterjee A, Vance GF, Tinker DB (2009) Carbon pools of managed and unmanaged stands of ponderosa and lodgepole pine forests in Wyoming. Can J For Res 39(10):1893–1900. doi:10.1139/X09-112

    Article  CAS  Google Scholar 

  • Chauvat M, Titsch D, Zaytsev AS, Wolters V (2011) Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For Ecol Manag 262:317–324. doi:10.1016/j.foreco.2011.03.037

    Article  Google Scholar 

  • Chiti T, Publisi A, Certini G, Sanesi G, Buresti E (2003) Sequestro del carbonio in suoli su discarich minerarie riforestate con specie azotofissatrici e non. SISEF atti 4:53–57

    Google Scholar 

  • Ciais Ph, Reichstein M, Viovy N, Granier, A, Ogee, J, Allard V, Aubinet M, Buchmann N, Bernhofer Chr, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Gruenwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533

    Google Scholar 

  • Condés S, del Rio M, Sterba H (2013) Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. Forest Ecol Manag 292:86–95

    Article  Google Scholar 

  • D’Amato AW, Bradford JB, Fraver S, Palik BJ (2011) Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. For Ecol Manag 262(5):803–816. doi:10.1016/j.foreco.2011.05.014

    Article  Google Scholar 

  • de las Heras J, Moya D, López-Serrano FR, Rubio E (2013) Carbon sequestration of naturally regenerated Aleppo pine stands in response to early thinning. New For 44(3):457–470. doi:10.1007/s11056-012-9356-2

    Article  Google Scholar 

  • del Río M (1999) Régimen de claras y modelos de producción para Pinus sylvestris L. en los sistemas Central e Ibérico. Tesis Doctoral, INIA, 257 p

    Google Scholar 

  • del Río M, Sterba H (2009) Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann For Sci 66:502

    Article  Google Scholar 

  • Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in Forest Biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  CAS  PubMed  Google Scholar 

  • FAO (1995) Forest resources assessment 1990. Global synthesis. Available online at: http://www.fao.org/docrep/007/v5695e/v5695e00.htm

  • FAO (2006) Global forest resources assesment 2005. Progress towards sustainable forest management. FAO Forestry Paper 147 320 pp. FAO, Rome Available online at on http://www.fao.org/docrep/008/a0400e/a0400e00.htm. Last accessed 30 Sept 2007

  • FAO (2010) Global forest resources assesment 2010. Main Report FAO Forestry Paper 163 340 pp. Available online at http://www.fao.org/forestry/fra/fra2010/en/

  • FAO (2015) Global forest resources assessment 2015. FAO-Forestry Paper 1. Available online at http://www.fao.org/forest-resources-assessment/current-assessment/en/

  • Forrester DI, Pretzsch H (2015) Tamm review: on the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manag (in press). doi:10.1016/j.foreco.2015.08.016

  • Franklin J, Berg D, Thomburgh D, Tappeiner J (1997) Alternative silvicultural approaches to timber harvesting: variable retention. In: Kohm D, Franklin J (eds) Creating a forestry for the 21st century. Island Press, Washington, DC, pp 111–139

    Google Scholar 

  • Fuhrer J, Benitson M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forestry in Switzerland. Clim Chang 79:79–102

    Article  CAS  Google Scholar 

  • Fujimori T (2001). Ecological and silvicultural strategies for sustainable forest management. Elsevier. Amsterdam 398 pages

    Google Scholar 

  • Goodman RC, Philips OL, Baker TR (2014) The importance of crown dimensions to improve tropical tree biomass estiamtes. Ecol Appl 24:680–698

    Article  PubMed  Google Scholar 

  • Gracia C, Sabaté S, López B, Sánchez A (2001) Presente y futuro del bosque mediterráneo: balance de carbono, gestión forestal y cambio global. In: Zamora Ry Puignaire FI (eds) Aspectos funcionales de los ecosistemas mediterráneos CSIC-AEET, Granada, pp 351–372

    Google Scholar 

  • Gracia C, Gil L, Montero G (2005) Impactos sobre el sector forestal. In: Moreeeno Rodríguez JM (ed) Evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, pp 399–436

    Google Scholar 

  • Granda E, Rossatto DR, Camarero JJ, Voltas J, Valladares F (2014) Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought. Oecologia 174:307–317

    Article  PubMed  Google Scholar 

  • Han S-K, Han H-S, Page-Dumroese DS, Johnson LR (2009) Soil compaction associated with cut-to-length and whole-tree harvesting of a coniferous forest. Can J For Res 39(5):976–989. doi:10.1139/x09-027

    Article  Google Scholar 

  • Helms JA (ed) (1998) The dictionary of forestry. Society of American Forestry, Bethesda, 210 pp

    Google Scholar 

  • Henderson GS (1995) Soil organic matter: a link between forest management and productivity. In: Bigham JM, Bartels JM (eds) Carbon forms and functions in forest soils, vol W1. Soils Science Society of America, Madison, pp. 419–435

    Google Scholar 

  • Hennon PE, Wittwer DT, D’Amore DV, Lamb M (2009) Yellow-cedar decline: key landscape features and snow modeling of a climate-induced forest decline on a dormant volcano. Phytopathology 99:S52

    Google Scholar 

  • Herrero C, Pando V, Bravo F (2010) Modelling coarse woody debris in Pinus spp. plantations. A case study in Northern Spain. Ann For Sci 67:708. doi:10.1051/forest/2010033

    Article  Google Scholar 

  • Herrero C, Turrión B, Pando V, Bravo F (2011) Carbon in heartwood, sapwood and bark along stem profile in three Mediterranean Pinus species. Ann For Sci 68(6):1067–1076. http://dx.doi.org/10.1007/s13595-011-0122-y

  • Herrero C, Krankina O, Monleon VJ, Bravo F (2014a) Amount and distribution of coarse woody debris in pine ecosystems of north-western Spain, Russia/United States. iForest 7:53–60. doi:10.3832/ifor0644-006

    Article  Google Scholar 

  • Herrero C, Juez L, Tejedor C, Pando V, Bravo F (2014b) Importance of root system in total biomass for Eucalyptus globulus in northern Spain. Biomass Bioenergy 67:212–222. doi:10.1016/j.biombioe.2014.04.023

    Article  CAS  Google Scholar 

  • Hoover C, Stout S (2007) The carbon consequences of thinning techniques: stand structure makes a difference. J For 105(5):266–270

    Google Scholar 

  • Hoover CM (2011) Management impacts on forest floor and soil organic carbon in northern temperate forests of the US. Carbon Balance and Management 6:17. doi:10.1186/1750-0680-6-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The U.S. Carbon Budget : contributions from Land-use change. Science 285:574–578

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez JJ, Vayreda J, Gracia C (2002) Metodología complementaria al Inventario Forestal Nacional en Catalunya. In: Bravo F, del Río M, del Peso C (eds) El Inventario Forestal Nacional. Elemento clave para la. Gestión Forestal Sostenible, pp 67–77

    Google Scholar 

  • IPCC (2001) Tercer Informe de Evaluación. Cambio climático 2001. Mitigación. Resumen para responsables de políticas y resumen técnico

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Available online on http://www.ipcc.ch/SPM040507.pdf

  • IPCC (2014) Climate change 2014: Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on climate change [Core Writing Team, Pachauri RK, Meyer LA (eds)]. IPCC. Geneva, 151 pp

    Google Scholar 

  • Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848

    Article  PubMed  Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4):253–268. doi:10.1016/j.geoderma.2006.09.003

    Article  CAS  Google Scholar 

  • Jiménez E, Vega JA, Fernández C, Fonturbel T (2011) Is pre-commercial thinning compatible with carbon sequestration? A case study in a maritime pine stand in northwestern Spain. Forestry 84(2):149–157. doi:10.1093/forestry/cpr002

    Article  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140(2–3):227–238. doi:10.1016/S0378-1127(00)00282-6

    Article  Google Scholar 

  • Jonard M, Misson L, Ponette Q (2006) Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Can J For Res 36(10):2684–2695. doi:10.1139/x06-153

    Article  CAS  Google Scholar 

  • Jurgensen M, Tarpey R, Pickens J, Kolka R, Palik B (2012) Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci Soc Am J 76(4):1418–1425. doi:10.2136/sssaj2011.0257

    Article  CAS  Google Scholar 

  • Kaipainen T, Liski J, Pussinen A, Karjalainen T (2004) Managing carbon sinks by changing rotation length in European forests. Environ Sci Pol 7:205–219

    Article  CAS  Google Scholar 

  • Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO global Forest Resources Assessment 2015. For Ecol Manag 352:9–20. doi:10.1016/j.foreco.2015.06.014

    Article  Google Scholar 

  • Keyser TL, Zarnoch SJ (2012) Thinning, age, and site quality influence live tree carbon stocks in upland hardwood forests of the Southern Appalachians. For Sci 58(5):407–418

    Google Scholar 

  • Kolström M, Lindner M, Vilén T, Maroschek M, Seidl R, Lexer MJ, Netherer S, Kremer A, Delzon S, Barbati A, Marchetti M, Corona P (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2:961–982

    Article  Google Scholar 

  • Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547

    Article  Google Scholar 

  • Kurz WA, Beukema SJ, Apps MJ (1998) Carbon budget implications of the transition from natural to managed disturbance regimes in forest landscapes. Mitig Adapt Strateg Glob Chang 2:405–421

    Google Scholar 

  • Lindner M, Karjalainen T (2007) Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. Eur J Forest Res 126:149–156

    Article  Google Scholar 

  • Liski J, Perruchoud D, Karjalainen T (2002) Increasing carbon stocks in forest soils of western Europe. For Ecol Manag 169:159–175

    Article  Google Scholar 

  • Liu J, Peng C, Apps M, Dang Q, Banfield E, Kurz W (2002) Historic carbon budgets of Ontario’s forest ecosystems. For Ecol Manag 169:103–114

    Article  Google Scholar 

  • Martin E (2005) Revisión de la ordenación del M.U.P. n° 50 “Pinar del Llano” del término municipal de Portillo (Valladolid). Proyecto Fin de Carrera, Ingeniería Técnica Forestal. E,T.S. de Ingenierías Agrarias de Palencia. University of Valladolid, Spain

    Google Scholar 

  • McCarl BA, Schneider UA (2001) Greenhouse gas mitigation in U.S. agriculture and forestry. Science 294:2481–2482

    Article  CAS  PubMed  Google Scholar 

  • Melillo J, Prentice IC, Farquhar CD, Schulze ED, Sala OE (1996) Terrestrial biotic responses to environmental change and feedbacks to climate. In: Houghton JT, . Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995-The sciencie of climate change. Cambridge University Press, Cambridge, pp. 445–481

    Google Scholar 

  • Metsaranta JM, Kurz WA, Neilson ET, Stinson G (2010) Implications of future disturbance regimes on the carbon balance of Canada’s managed forest (2010–2100). Tellus B 62(5):719–728. doi:10.1111/j.1600-0889.2010.00487.x

    Article  Google Scholar 

  • Montero G, Muñoz M, Donés J, Rojo A (2004) Fijación de CO2 por Pinus sylvestris L. y Quercus pyrenaica Willd. En los montes “Pinar de Valsaín” y “Matas de Valsaín”. Investigación Agraria: Sistemas y Recursos Forestales 13(2):399–416

    Google Scholar 

  • Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de biomasa y fijación de CO2 por los bosques españoles. Monografías INIA Serie Forestal, Madrid, 270 pp

    Google Scholar 

  • Nabuurs GJ, Masera O, Andrasko K, Benítez-Ponce P, Boer R, Dutsckhe M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Natsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sánchez MJ, Zhang X (2007) Forestry. In: Metz B, Davidson OR, P.R. B, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nabuurs G-J, Schelhass M-J, Mohren MJ, Field CB (2003) Temporal evolution of the European forest sector carbon sink from 1950–1999. Glob Chang Biol 9:152–160

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259(5):857–866. doi:10.1016/j.foreco.2009.12.009

    Article  Google Scholar 

  • Novák J, Slodicák M (2004) Structure and accumulation of litterfall under Norway spruce stands in connection with thinnings. J For Sci 50(3):101–108

    Google Scholar 

  • Nyberg JB (1998) Statistics and the practice of adaptive management. In: Sit V, Taylor B (eds) Statistical methods for adaptive management studies/Res. Br., B.C. Min. For., Res.Br., Land Manage. Hand 42:1–7

    Google Scholar 

  • Olivar J, Bogino S, Rathegeber C, Bonnesoeur V, Bravo F (2014) Thinning has a positive effect on growth dynamics and growth-climate relationships in Aleppo pine (Pinus halepensis L.) trees of different crown classes. Ann For Sci 71(3):395–404

    Article  Google Scholar 

  • Olivar J, Bogino S, Spiecker H, Bravo F (2012) Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendrochronologia 30:35–47. doi:10.1016/j.dendro.2011.06.001

    Article  Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan S-M, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292:2316–2320

    Article  CAS  PubMed  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180

    Article  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257

    Article  Google Scholar 

  • Powers MD, Kolka R, Palik B, McDonald R, Jurgensen M (2011) Long-term management impacts on carbon storage in Lake States forests. For Ecol Manag 262(3):424–431. doi:10.1016/j.foreco.2011.04.008

    Article  Google Scholar 

  • Powers MD, Kolka RK, Bradford JB, Palik BJ, Fraver S, Jurgensen MF (2012) Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands. Ecol Appl 22(4):1297–1307. doi:10.1890/11-0411.1

    Article  PubMed  Google Scholar 

  • Prescott CE, Vesterdal L (2013) Tree species effects on soils in temperate and boreal forests: emerging themes and research needs. For Ecol Manag 309:1–3. doi:10.1016/j.foreco.2013.06.042

    Article  Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967. doi:10.1038/ncomms5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L) and European beech (Fagus sylvatica L) analysed along a productivity gradient through Europe. Eur J Forest Res 134(5):927–947

    Article  Google Scholar 

  • Prieto-Recio C, Martin-García J, Diez JJ, Bravo F (2015) Unravelling the associations between climate, soil properties and forest management in Pinus pinaster decline in the Iberian Peninsula. For Ecol Manag (in press). doi:10.1016/j.foreco.2015.07.033

  • Reichstein M, Tenhunen JD, Roupsard O Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G,Valentini R (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypothesis? Glob Chang Biol 8:999–1017

    Google Scholar 

  • Ruano I, Manso R, Fortin R Bravo F (2015) Extreme climate conditions limit seed availability to successfully attain natural regeneration of Pinus pinaster in sandy areas of Central Spain. Can J For Res (in press). doi:10.1139/cjfr-2015-0257

  • Ruano I, Pando V, Bravo F (2009) How do light and water influence Pinus pinaster Ait. germination and early seedling development? For Ecol Manag 258:2647–2653. doi:10.1016/j.foreco.2009.09.027

    Article  Google Scholar 

  • Ruano I, Rodríguez E, Bravo F (2013) Effects of pre-commercial thinning on growth and reproduction in post fire regeneration of Pinus halepensis Mill. Ann For Sci 70(4):357–366. doi:10.1007/s13595-013-0271-2

    Article  Google Scholar 

  • Ruiz-Peinado R, Bravo-Oviedo A, López-Senespleda E, Montero G, Río M (2013) Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? Eur J For Res 132:253–262

    Google Scholar 

  • Ruiz-Peinado R, Bravo-Oviedo A, Montero G, Río M (2016) Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig Adapt Strat Glob Chang 21:1059–1072

    Google Scholar 

  • Sabaté S, Gracia CA, Sanchez A (2002) Likely effects of climate change on growth of Quercus ilez, Pinus halepensis, Pinus pinaster, Pinus sylvetris and Fagus sylvatica forest in the Mediterranean region. For Ecol Manag 162(1):23–37

    Article  Google Scholar 

  • Scarascia-Mugnozza G, Matteucci G, Montagnani L, Masci A (2001) Gestione forestale sostenibile e carbonio organico nei suoli in ambiente mediterraneo: inquadramento del problema e aspetti metodologici per una ricerca nel territorio del Parco Nazionale della Calabria. L’Italia Forestale e Montana 5:333–343

    Google Scholar 

  • Schmid, S., Thürig, E., Kaufmann, E.,Lischke, H., Bugmann,H. (2006) Effect of forest management on futer carbon pools and fluxes: a model comparison. For Ecol Manag 237:65–82

    Google Scholar 

  • Skovsgaard JP, Stupak I, Vesterdal L (2006) Distribution of biomass and carbon in even-aged stands of Norway spruce (Picea abies ( L.) Karst.): a case study on spacing and thinning effects in northern Denmark. Scand J For Res 21(6):470–488. doi:10.1080/02827580601056268

    Article  Google Scholar 

  • Sohngen S, Andrasko K, Gytarsky M, Korovin G, Laestadius L, Murray B, Utkin A, Zamolodchikov D (2005) Stocks and flows: carbon inventory and mitigation potential of the Russian forest and land base. Report of the World Resources Institute, Washington, DC

    Google Scholar 

  • Tarpey RA, Jurgensen MF, Palik BJ, RK K (2008) The long-term effects of silvicultural thinning and partial cutting on soil compaction in red pine (Pinus resinosa Ait.) and northern hardwood stands in the northern Great Lakes Region of the United States. Can J Soil Sci 88(5):849–857. doi:10.4141/CJSS08001

    Article  Google Scholar 

  • Temesgen H, Affleck D, Poudel K, Gray A, Sessions J (2015) A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand J For Res 30(4):326–335. doi:10.1080/02827581.2015.1012114

    Google Scholar 

  • Tesfaye MA, Bravo F, Ruiz-Peinado R, Pando V, Bravo-Oviedo A (2016) Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261:70–79. doi:10.1016/j.geoderma.2015.06.022

    Article  CAS  Google Scholar 

  • The Royal Society (2001) The role of land carbon links in mitigating global climate change. Policy document 10/01 35 pp

    Google Scholar 

  • Turner J, Lambert M (2000) Change in organic carbon in forest plantation soils in eastern Australia. For Ecol Manag 133:231–247

    Article  Google Scholar 

  • Uzquiano S, Martínez J, San Martín R, Bravo F (2014) Mediciones dendrométricas y dasométricas mediante técnicas LiDAR y fotogramétricas Cuadernos de la Sociedad Española de Ciencas Forestales 40:193–202. http://secforestales.org/publicaciones/index.php/cuadernos_secf/article/view/17360/17176

  • Vesterdal L, Dalsgaard M, Felby C, Raulund-Rasmussen K, Jorgensen BB (1995) Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. For Ecol Manag 77:1–10. doi:10.1016/0378-1127(95)03579-Y

    Article  Google Scholar 

  • Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manag 309:4–18. doi:10.1016/j.foreco.2013.01.017

    Article  Google Scholar 

  • Vilà M, Vayreda J, Comas L, Ibáñez JJ, Mata T, Obón B (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Lett 10:241–250

    Article  PubMed  Google Scholar 

  • Weiskittel AR, MacFarlane DW, Radtke PJ, Affleck DLR, Temesgen H, Westfall JA, Woodall CW, Coulston JW (2015) A call to improve methods for estimating tree biomass for regional and national assessments. J For 113:414–424

    Google Scholar 

  • Woodbury PB, Smith JE, Heath LS (2007) Carbon sequestration in the U.S. forest sector from 1990–2010. For Ecol Manag 241:14–27

    Article  Google Scholar 

  • Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006) Old-growth forests can accumulate carbon in soils. Science 314:1417

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Lewis BJ, Wu S, Yi D, Zhou L, Wei Y, Dai L (2014) Biomass carbon storage and its sequestration potential of afforestation under natural forest protection program in China. Chin Geogr Sci 24(4):406–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Bravo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bravo, F., del Río, M., Bravo-Oviedo, A., Ruiz-Peinado, R., del Peso, C., Montero, G. (2017). Forest Carbon Sequestration: The Impact of Forest Management. In: Bravo, F., LeMay, V., Jandl, R. (eds) Managing Forest Ecosystems: The Challenge of Climate Change. Managing Forest Ecosystems, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-28250-3_13

Download citation

Publish with us

Policies and ethics