Skip to main content

Thermoelastic Waves in Microstructured Solids

  • 575 Accesses

Abstract

Thermoelastic wave propagation suggests a coupling between elastic deformation and heat conduction in a body. Microstructure of the body influences the both processes. Since energy is conserved in elastic deformation and heat conduction is always dissipative, the generalization of classical elasticity theory and classical heat conduction is performed differently. It is shown in the paper that a hyperbolic evolution equation for microtemperature can be obtained in the framework of the dual internal variables approach keeping the parabolic equation for the macrotemperature. The microtemperature is considered as a macrotemperature fluctuation. Numerical simulations demonstrate the formation and propagation of thermoelastic waves in microstructured solids under thermal loading.

Keywords

  • Internal Variable
  • Free Energy Density
  • Internal Heat Source
  • Dissipation Inequality
  • Hyperbolic Heat Conduction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mindlin, R.D.: Arch. Ration. Mech. Anal. 16(1), 51 (1964)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Capriz, G.: Continua with Microstructure. Springer, New York (1989)

    CrossRef  MATH  Google Scholar 

  3. Eringen, A.C.: Microcontinuum Field Theories. Springer (1999)

    Google Scholar 

  4. Forest, S.: J. Eng. Mech. 135(3), 117 (2009)

    CrossRef  Google Scholar 

  5. Joseph, D.D., Preziosi, L.: Rev. Mod. Phys. 61(1), 41 (1989)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Chandrasekharaiah, D.: Appl. Mech. Rev. 51(12), 705 (1998)

    CrossRef  Google Scholar 

  7. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press (2009)

    Google Scholar 

  8. Straughan, B.: Heat Waves, vol. 177. Springer Science and Business Media (2011)

    Google Scholar 

  9. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Arch. Appl. Mech. 81(2), 229 (2011)

    CrossRef  MATH  Google Scholar 

  10. Berezovski, A., Engelbrecht, J., Maugin, G.A.: J. Therm. Stress. 34(5–6), 413 (2011)

    CrossRef  Google Scholar 

  11. Tamma, K.K., Zhou, X.: J. Therm. Stress. 21(3–4), 405 (1998)

    CrossRef  Google Scholar 

  12. Berezovski, A., Engelbrecht, J., Ván, P.: Arch. Appl. Mech. 84(9–11), 1249 (2014)

    CrossRef  Google Scholar 

  13. Berezovski, A., Berezovski, M.: Acta Mech. 224(11), 2623 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Maugin, G.A.: Arch. Appl. Mech. 75(10–12), 723 (2006)

    CrossRef  MATH  Google Scholar 

  15. Maugin, G.: J. Non-Equilib. Thermodyn. 15(2), 173 (1990)

    CrossRef  Google Scholar 

  16. Horstemeyer, M.F., Bammann, D.J.: Int. J. Plast. 26(9), 1310 (2010)

    CrossRef  MATH  Google Scholar 

  17. Ván, P., Berezovski, A., Engelbrecht, J.: J. Non-Equilib. Thermodyn. 33(3), 235 (2008)

    CrossRef  MATH  Google Scholar 

  18. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Arch. Appl. Mech. 81(2), 229 (2011a)

    CrossRef  MATH  Google Scholar 

  19. Berezovski, A., Engelbrecht, J., Maugin, G.A.: J. Therm. Stress. 34(5–6), 413 (2011b)

    CrossRef  Google Scholar 

  20. Hopcroft, M.A., Nix, W.D., Kenny, T.W.: J. Microelectromech. Syst. 19(2), 229 (2010)

    CrossRef  Google Scholar 

  21. Lienhard, J.H.: A Heat Transfer Textbook. Courier Corporation (2011)

    Google Scholar 

  22. Berezovski, A., Engelbrecht, J.: J. Coupled Syst. Multiscale Dyn. 1(1), 112 (2013)

    CrossRef  Google Scholar 

  23. Berezovski, A., Engelbrecht, J., Maugin, G.: Arch. Appl. Mech. 70(10), 694 (2000)

    CrossRef  MATH  Google Scholar 

  24. Berezovski, A., Maugin, G.: J. Comput. Phys. 168(1), 249 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002)

    Google Scholar 

  26. Guinot, V.: Wave Propagation in Fluids: Models and Numerical Techniques. Wiley (2012)

    Google Scholar 

Download references

Acknowledgments

The research was supported by the EU through the European Regional Development Fund and by the Estonian Research Council project PUT 434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berezovski, A., Berezovski, M. (2016). Thermoelastic Waves in Microstructured Solids. In: Albers, B., Kuczma, M. (eds) Continuous Media with Microstructure 2. Springer, Cham. https://doi.org/10.1007/978-3-319-28241-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28241-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28239-8

  • Online ISBN: 978-3-319-28241-1

  • eBook Packages: EngineeringEngineering (R0)