Abstract
Thermoelastic wave propagation suggests a coupling between elastic deformation and heat conduction in a body. Microstructure of the body influences the both processes. Since energy is conserved in elastic deformation and heat conduction is always dissipative, the generalization of classical elasticity theory and classical heat conduction is performed differently. It is shown in the paper that a hyperbolic evolution equation for microtemperature can be obtained in the framework of the dual internal variables approach keeping the parabolic equation for the macrotemperature. The microtemperature is considered as a macrotemperature fluctuation. Numerical simulations demonstrate the formation and propagation of thermoelastic waves in microstructured solids under thermal loading.
Keywords
- Internal Variable
- Free Energy Density
- Internal Heat Source
- Dissipation Inequality
- Hyperbolic Heat Conduction
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Mindlin, R.D.: Arch. Ration. Mech. Anal. 16(1), 51 (1964)
Capriz, G.: Continua with Microstructure. Springer, New York (1989)
Eringen, A.C.: Microcontinuum Field Theories. Springer (1999)
Forest, S.: J. Eng. Mech. 135(3), 117 (2009)
Joseph, D.D., Preziosi, L.: Rev. Mod. Phys. 61(1), 41 (1989)
Chandrasekharaiah, D.: Appl. Mech. Rev. 51(12), 705 (1998)
Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press (2009)
Straughan, B.: Heat Waves, vol. 177. Springer Science and Business Media (2011)
Berezovski, A., Engelbrecht, J., Maugin, G.A.: Arch. Appl. Mech. 81(2), 229 (2011)
Berezovski, A., Engelbrecht, J., Maugin, G.A.: J. Therm. Stress. 34(5–6), 413 (2011)
Tamma, K.K., Zhou, X.: J. Therm. Stress. 21(3–4), 405 (1998)
Berezovski, A., Engelbrecht, J., Ván, P.: Arch. Appl. Mech. 84(9–11), 1249 (2014)
Berezovski, A., Berezovski, M.: Acta Mech. 224(11), 2623 (2013)
Maugin, G.A.: Arch. Appl. Mech. 75(10–12), 723 (2006)
Maugin, G.: J. Non-Equilib. Thermodyn. 15(2), 173 (1990)
Horstemeyer, M.F., Bammann, D.J.: Int. J. Plast. 26(9), 1310 (2010)
Ván, P., Berezovski, A., Engelbrecht, J.: J. Non-Equilib. Thermodyn. 33(3), 235 (2008)
Berezovski, A., Engelbrecht, J., Maugin, G.A.: Arch. Appl. Mech. 81(2), 229 (2011a)
Berezovski, A., Engelbrecht, J., Maugin, G.A.: J. Therm. Stress. 34(5–6), 413 (2011b)
Hopcroft, M.A., Nix, W.D., Kenny, T.W.: J. Microelectromech. Syst. 19(2), 229 (2010)
Lienhard, J.H.: A Heat Transfer Textbook. Courier Corporation (2011)
Berezovski, A., Engelbrecht, J.: J. Coupled Syst. Multiscale Dyn. 1(1), 112 (2013)
Berezovski, A., Engelbrecht, J., Maugin, G.: Arch. Appl. Mech. 70(10), 694 (2000)
Berezovski, A., Maugin, G.: J. Comput. Phys. 168(1), 249 (2001)
LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002)
Guinot, V.: Wave Propagation in Fluids: Models and Numerical Techniques. Wiley (2012)
Acknowledgments
The research was supported by the EU through the European Regional Development Fund and by the Estonian Research Council project PUT 434.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Berezovski, A., Berezovski, M. (2016). Thermoelastic Waves in Microstructured Solids. In: Albers, B., Kuczma, M. (eds) Continuous Media with Microstructure 2. Springer, Cham. https://doi.org/10.1007/978-3-319-28241-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-28241-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28239-8
Online ISBN: 978-3-319-28241-1
eBook Packages: EngineeringEngineering (R0)