Advertisement

Thermoelastic Waves in Microstructured Solids

  • Arkadi BerezovskiEmail author
  • Mihhail Berezovski
Chapter

Abstract

Thermoelastic wave propagation suggests a coupling between elastic deformation and heat conduction in a body. Microstructure of the body influences the both processes. Since energy is conserved in elastic deformation and heat conduction is always dissipative, the generalization of classical elasticity theory and classical heat conduction is performed differently. It is shown in the paper that a hyperbolic evolution equation for microtemperature can be obtained in the framework of the dual internal variables approach keeping the parabolic equation for the macrotemperature. The microtemperature is considered as a macrotemperature fluctuation. Numerical simulations demonstrate the formation and propagation of thermoelastic waves in microstructured solids under thermal loading.

Keywords

Internal Variable Free Energy Density Internal Heat Source Dissipation Inequality Hyperbolic Heat Conduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research was supported by the EU through the European Regional Development Fund and by the Estonian Research Council project PUT 434.

References

  1. 1.
    Mindlin, R.D.: Arch. Ration. Mech. Anal. 16(1), 51 (1964)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Capriz, G.: Continua with Microstructure. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  3. 3.
    Eringen, A.C.: Microcontinuum Field Theories. Springer (1999)Google Scholar
  4. 4.
    Forest, S.: J. Eng. Mech. 135(3), 117 (2009)CrossRefGoogle Scholar
  5. 5.
    Joseph, D.D., Preziosi, L.: Rev. Mod. Phys. 61(1), 41 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Chandrasekharaiah, D.: Appl. Mech. Rev. 51(12), 705 (1998)CrossRefGoogle Scholar
  7. 7.
    Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press (2009)Google Scholar
  8. 8.
    Straughan, B.: Heat Waves, vol. 177. Springer Science and Business Media (2011)Google Scholar
  9. 9.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: Arch. Appl. Mech. 81(2), 229 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: J. Therm. Stress. 34(5–6), 413 (2011)CrossRefGoogle Scholar
  11. 11.
    Tamma, K.K., Zhou, X.: J. Therm. Stress. 21(3–4), 405 (1998)CrossRefGoogle Scholar
  12. 12.
    Berezovski, A., Engelbrecht, J., Ván, P.: Arch. Appl. Mech. 84(9–11), 1249 (2014)CrossRefGoogle Scholar
  13. 13.
    Berezovski, A., Berezovski, M.: Acta Mech. 224(11), 2623 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Maugin, G.A.: Arch. Appl. Mech. 75(10–12), 723 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Maugin, G.: J. Non-Equilib. Thermodyn. 15(2), 173 (1990)CrossRefGoogle Scholar
  16. 16.
    Horstemeyer, M.F., Bammann, D.J.: Int. J. Plast. 26(9), 1310 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ván, P., Berezovski, A., Engelbrecht, J.: J. Non-Equilib. Thermodyn. 33(3), 235 (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: Arch. Appl. Mech. 81(2), 229 (2011a)CrossRefzbMATHGoogle Scholar
  19. 19.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: J. Therm. Stress. 34(5–6), 413 (2011b)CrossRefGoogle Scholar
  20. 20.
    Hopcroft, M.A., Nix, W.D., Kenny, T.W.: J. Microelectromech. Syst. 19(2), 229 (2010)CrossRefGoogle Scholar
  21. 21.
    Lienhard, J.H.: A Heat Transfer Textbook. Courier Corporation (2011)Google Scholar
  22. 22.
    Berezovski, A., Engelbrecht, J.: J. Coupled Syst. Multiscale Dyn. 1(1), 112 (2013)CrossRefGoogle Scholar
  23. 23.
    Berezovski, A., Engelbrecht, J., Maugin, G.: Arch. Appl. Mech. 70(10), 694 (2000)CrossRefzbMATHGoogle Scholar
  24. 24.
    Berezovski, A., Maugin, G.: J. Comput. Phys. 168(1), 249 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002)Google Scholar
  26. 26.
    Guinot, V.: Wave Propagation in Fluids: Models and Numerical Techniques. Wiley (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Cybernetics at Tallinn University of TechnologyTallinnEstonia
  2. 2.Embry-Riddle Aeronautical UniversityDaytona BeachUSA

Personalised recommendations