Skip to main content

A Study of Deformation and Failure of Unidirectional Fiber-Reinforced Polymers Under Transverse Loading by Means of Computational Micromechanics

  • Chapter
  • First Online:
Continuous Media with Microstructure 2
  • 625 Accesses

Abstract

A method for determining the in-situ strength of fiber-reinforced laminas for three types of transverse loading including compression, tension and shear is presented. In the framework of this method, an analysis of local stresses that are responsible for the coalescence of matrix cracks is carried out by using a multi-fiber unit cell model and finite element method. The random distribution of fibers, fiber-matrix decohesion and matrix plastic deformations are taken into account in the micromechanical simulations. The present study also shows that the nonlinear hardening behavior of matrix reflects more realistically the influence of plastic deformations on the in-situ transverse strength of lamina than the perfectly plastic behavior of matrix. The prediction of the in-situ transverse strength is verified against the experimental data for a cross ply laminate subjected to uniaxial tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez, C., LLorca, J.: Mechanical behavior of unidirectional fiber-reinforced polymersunder transverse compression: microscopic mechanisms and modeling. Compos. Sci. Technol. 67, 2795–2806 (2007)

    Google Scholar 

  2. Totry, E., Gonzalez, C., LLorca, J.: Failure locus of fiber-reinforced composites undertransverse compression and out-of-plane shear. Compos. Sci. Technol. 68, 829–839 (2008)

    Google Scholar 

  3. Vaughan T.J., McCarthy C.T., 2011. A micromechanical study on the effect of intra-ply properties on transverse shear fracture in fibre reinforced composites. Compos.: Part A 42, 1217-1228

    Google Scholar 

  4. Vaughan, T.J., McCarthy, C.T.: Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Compos. Sci. Technol. 71, 388–396 (2011)

    Article  Google Scholar 

  5. Melro, A.R., Camanho, P.P., Andrade Pires, F.M., Pinho, S.T.: Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part II—micromechanical analyses. Int. J. Solids Struct. 50, 1906–1915 (2013)

    Google Scholar 

  6. Yang, L., Yan, Y., Liu, Y., Ran, Z.: Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos. Sci. Technol. 72, 1818–1825 (2012)

    Article  Google Scholar 

  7. Totry, E., Gonzalez, C., Llorca, J., Molina-Aldareguía, J.: Mechanisms of shear deformation in fibre-reinforced polymers: experiments and simulations. Int. J. Fract. 158, 197–209 (2009)

    Article  MATH  Google Scholar 

  8. Ng, W.H., Salvi, A.G., Waas, A.M.: Characterization of the in-situ non-linear shear response of laminated fiber-reinforced composites. Compos. Sci. Technol. 70, 1126–1134 (2010)

    Article  Google Scholar 

  9. Soni, G., Singh, R., Mitra, M., Falzon, B.G.: Modelling matrix damage and fibre-matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M2RVE). Int. J. Solids Struct. 51, 449–461 (2014)

    Article  Google Scholar 

  10. Wongsto, A., Li, S.: Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross section. Compos.: Part A 36, 1246–1266 (2005)

    Google Scholar 

  11. Soden, P.D., Hinton, M.J., Kaddour, A.S.: Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos. Sci. Technol. 58, 1011–1022 (1998)

    Article  Google Scholar 

  12. ANSYS, Inc.: Theory reference for the mechanical APDL and mechanical applications, release 14.1. Canonsburg PA: ANSYS, Inc, 2012

    Google Scholar 

  13. Barbero, E.J.: Finite Element Analysis of Composite Materials. CRC Press (2008)

    Google Scholar 

  14. Fiedler, B., Hojo, M., Ochiai, S., Schulte, K., Ando, M.: Failure behavior of an epoxy matrix under different kindsof static loading. Compos. Sci. Technol. 61, 1615–1624 (2001)

    Article  Google Scholar 

  15. Hobbiebrunken, T., Fiedler, B., Hojo, M., Tanaka, M.: Experimental determination of the true epoxy resin strengthusing micro-scaled specimens. Compos.: Part A 38, 814–818 (2007)

    Google Scholar 

  16. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10, 157–165 (1952)

    MathSciNet  MATH  Google Scholar 

  17. Kinloch, A.J., Young, R.J.: Fracture Behavior of Polymers. Elsevier, Netherlands (1983)

    Google Scholar 

  18. Quinson, R., Perez, J., Rink, M., et al.: Yield criteria for amorphous glassy polymers. J. Mater. Sci. 32, 1371–1379 (1997)

    Article  Google Scholar 

  19. Alfano, G., Crisfield, M.A.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Method. Eng. 50, 1701–36 (2001)

    Article  MATH  Google Scholar 

  20. Gregory, J.R., Spearing, S.M.: Nanoindentation of neat and in situ polymers in polymer-matrix composites. Compos. Sci. Technol. 65, 595–607 (2005)

    Article  Google Scholar 

  21. Zhou, X.F., Wagner, H.D., Nutt, S.R.: Interfacial properties of polymer composites measured by push-out and fragmentation tests. Compos.: Part A 32, 1543–1551 (2001)

    Google Scholar 

  22. Ogihara, S., Koyanagi, J.: Investigation of combined stress state failure criterion for glassfiber/epoxy interface by the cruciform specimen method. Compos. Sci. Technol. 70, 143–50 (2010)

    Article  Google Scholar 

  23. Soden, P.D., Hinton, M.J., Kaddour, A.S.: Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: failure exercise benchmark data. Compos. Sci. Technol. 62, 1489–1514 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the National Science Centre of Poland under contract DEC-2011/03/D/ST8/04817 is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Romanowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Romanowicz, M. (2016). A Study of Deformation and Failure of Unidirectional Fiber-Reinforced Polymers Under Transverse Loading by Means of Computational Micromechanics. In: Albers, B., Kuczma, M. (eds) Continuous Media with Microstructure 2. Springer, Cham. https://doi.org/10.1007/978-3-319-28241-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28241-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28239-8

  • Online ISBN: 978-3-319-28241-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics