Automated Hyperlink Text Analysis of City Websites: Projected Image Representation on the Web

  • Christian WeismayerEmail author
  • Ilona Pezenka
  • Wilhelm Loibl
Conference paper


The objective of this study is to identify the image representations of 75 European cities on the Web. As an effective image positioning strategy this will result in successful differentiation from competitors, given that it is crucial for tourism destinations to regularly examine their image. This study focuses on the supply side of destination-image formation and is therefore concerned with analysing the projected destination image. Hyperlink texts of DMO websites were collected automatically by a crawler. The texts were then edited and filtered. Latent semantic dimensions were generated by applying PCA. A hierarchical cluster approach revealed different groups of hyperlink terms. Finally, the co-occurrence of terms and cities was displayed in a joint map indicating which groups of hyperlink terms are over- or underrepresented for each city. This information permits drawing conclusions regarding the projected images of cities.


Projected image City website Crawler Text mining Latent semantic 


  1. Baloglu, S. (1999). A path analytic model of visitation intention involving information sources, sociopsychological motivations, and destination image. Journal of Travel and Tourism Marketing, 8(3), 81–90.CrossRefGoogle Scholar
  2. Baloglu, S., & Brinberg, D. (1997). Affective images of tourism destination. Journal of Travel Research, 35(4), 11–15.Google Scholar
  3. Baloglu, S., & McCleary, K. W. (1999). A model of destination image formation. Annals of Tourism Research, 26(4), 868–897.CrossRefGoogle Scholar
  4. Beerli, A., & Martín, J. D. (2004). Factors influencing destination image. Annals of Tourism Research, 31(3), 657–681.CrossRefGoogle Scholar
  5. Beirne, E., & Curry, P. (1999). The impact of the internet on the information search process and tourism decision-making. In D. Buhalis & W. Schertler (Eds.), Information and communication technologies in tourism. Wien: Springer.Google Scholar
  6. Bigné, J., Sanchez, M., & Sanchez, J. (2001). Tourism image, evaluation variables and after purchase behavior: Inter-relationships. Tourism Management, 22(6), 607–616.CrossRefGoogle Scholar
  7. Bouchet-Valat, M. (2013). SnowballC: Snowball stemmers based on the C libstemmer UTF-8 library. R package version 0.5.1.Google Scholar
  8. Bramwell, B., & Rawding, L. (1996). Tourism marketing images of industrial cities. Annals of Tourism Research, 23(1), 201–221.CrossRefGoogle Scholar
  9. Brin, S., & Page, L. (2012). Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer Networks, 56(18), 3825–3833.CrossRefGoogle Scholar
  10. Buhalis, D., & Law, R. (2008). Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research. Tourism Management, 29(4), 609–623.CrossRefGoogle Scholar
  11. Choi, S., Lehto, X. Y., & Morrison, A. M. (2007). Destination image representation on the web: Contest analysis of Macau travel related websites. Tourism Management, 28(1), 118–129.CrossRefGoogle Scholar
  12. Chon, K. (1990). The role of destination image in tourism: A review and discussion. Tourism Review, 45(2), 2–9.CrossRefGoogle Scholar
  13. Crompton, J. L. (1979). Motivations for pleasure vacation. Annals of Tourism Research, 6(4), 408–424.CrossRefGoogle Scholar
  14. Crompton, J. L., & Ankomah, P. (1993). Choice set propositions in destination decisions. Annals of Tourism Research, 20(3), 461–476.CrossRefGoogle Scholar
  15. Dann, G. M. (1977). Anomie, ego-enhancement and tourism. Annals of Tourism Research, 4(4), 184–194.CrossRefGoogle Scholar
  16. Dann, G. M. (1996). Tourists’ images of a destination-an alternative analysis. Journal of Travel and Tourism Marketing, 5(1–2), 41–55.CrossRefGoogle Scholar
  17. Echtner, C. M., & Ritchie, J. B. (1991). The meaning and measurement of destination image. The Journal of Tourism Studies, 2(2), 2–12.Google Scholar
  18. Fakeye, P. C., & Crompton, J. L. (1991). Image difference between prospective, first-time and repeat visitors to the Lower Rio Grande Valley. Journal of Travel Research, 30(2), 10–16.CrossRefGoogle Scholar
  19. Feinerer, I. & Hornik, K. (2015a). tm: Text Mining Package. R package version 0.6-2.Google Scholar
  20. Feinerer, I. & Hornik, K. (2015b). Wordnet: WordNet Interface. R package version 0.1-10.Google Scholar
  21. Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in R. Journal of Statistical Software, 25(5), 1–54.CrossRefGoogle Scholar
  22. Frías, D. M., Rodríguez, M. A., & Castaneda, J. A. (2008). Internet vs. travel agencies on pre-visit destination image formation: An information processing view. Tourism Management, 29(1), 163–179.CrossRefGoogle Scholar
  23. Gartner, W. (1989). Tourism image: Attribute measurement of state tourism products using multidimensional scaling techniques. Journal of Travel Research, 28(2), 16–20.CrossRefGoogle Scholar
  24. Gartner, W. G. (1993). Image formation process. Journal of Travel and Tourism Marketing, 2(2/3), 191–215.Google Scholar
  25. Goodall, B. (1988). How tourists choose holidays. In B. Goodall & G. Ashworth (Eds.), Marketing in the tourism industry. London: Routledge.Google Scholar
  26. Govers, R., & Go, F. M. (2004). Projected destination image online: Website content analysis of pictures and text. Information Technology and Tourism, 7(2), 73–89.CrossRefGoogle Scholar
  27. Gretzel, U., Yuan, Y., & Fesenmaier, D. (2000). Preparing for the new economy: Advertising strategies and change in destination marketing organizations. Journal of Travel Research, 39(2), 146–156.CrossRefGoogle Scholar
  28. Gunn, C. (1972). Vacationscape: Designing tourist regions. New York: Van Nostrand.Google Scholar
  29. Hunt, J. (1975). Images as factor in tourism development. Journal of Travel Research, 13(3), 1–7.CrossRefGoogle Scholar
  30. Jeong, C., Holland, S., Jun, S. H., & Gibson, H. (2012). Enhancing destination image through travel website information. International Journal of Tourism Research, 14(1), 16–27.CrossRefGoogle Scholar
  31. Kaplanidou, K., & Vogt, C. (2006). A structural analysis of destination travel intentions as a function of web site features. Journal of Travel Research, 45(2), 204–2016.CrossRefGoogle Scholar
  32. Law, R., Qi, S., & Buhalis, D. (2010). Progress in tourism management: A review of website evaluation in tourism research. Tourism Management, 31(3), 297–313.CrossRefGoogle Scholar
  33. Mazanec, J. A. (2010). Tourism-receiving countries in connotative Google space. Journal of Travel Research, 49(4), 501–512.CrossRefGoogle Scholar
  34. Moutinho, L. (1987). Consumer behavior in tourism. European Journal of Marketing, 21(10), 3–44.CrossRefGoogle Scholar
  35. Phelps, A. (1986). Holiday destination image – the problem of assessment: an example developed in Menorca. Tourism Management, 7(3), 168–180.CrossRefGoogle Scholar
  36. Pike, S., & Ryan, C. (2004). Destination positioning analysis through a comparison of cognitive, affective, and conative perceptions. Journal of Travel Research, 42(4), 333–342.CrossRefGoogle Scholar
  37. Princeton University. (2010). About WordNet. Princeton University. Retrieved from
  38. R Development Core Team. (2005). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, available at: (accessed 16 July 2015).
  39. Serna, A., Marchiori, E., Gerrikagoitia, J. K., Alzua-Sorzabal, A., & Cantoni, L. (2015). An auto-coding process for testing the cognitive-affective and conative model of destination image. In I. Tussyadiah & A. Inversini (Eds.), Information and communication technologies in tourism 2015. Cham: Springer.Google Scholar
  40. Stabler, M. J. (1990). The image of destination regions: Theoretical and empirical aspects. In B. Goodall & G. Ashworth (Eds.), Marketing in the tourism Industry: The promotion of destination regions. London: Routledge.Google Scholar
  41. Stepchenkova, S., & Morrison, A. M. (2006). The destination image of Russia: From the online induced perspective. Tourism Management, 27(5), 943–956.CrossRefGoogle Scholar
  42. Tasci, A. D. A., & Gartner, W. C. (2007). Destination image and its functional relationships. Journal of Travel Research, 45(4), 413–425.CrossRefGoogle Scholar
  43. Wallace, M. (2007). Jawbone Java WordNet API. Retrieved from
  44. Wang, Y., & Fesenmaier, D. (2004). Towards understanding members’ general participation in and active contribution to an online travel community. Tourism Management, 25(6), 709–722.CrossRefGoogle Scholar
  45. Wild, F. (2015a). An Open Source LSA Package for R. R package version 0.73.1.Google Scholar
  46. Wild, F. (2015b). An Open Source LSA Package for R. Reference manual.Google Scholar
  47. ITB World Travel Trends Report 2014/2015 (n.d). Retrieved July 25, 2015, from
  48. Xiang, Z., Gretzel, U., & Fesenmaier, D. (2009). Semantic representation of tourism on the internet. Journal of Travel Research, 47(4), 440–453.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Weismayer
    • 1
    Email author
  • Ilona Pezenka
    • 2
  • Wilhelm Loibl
    • 3
  1. 1.Department of Applied Statistics and EconomicsMODUL University ViennaWienAustria
  2. 2.Institute for Communication, Marketing and SalesFHWien University of Applied Sciences of WKWWienAustria
  3. 3.Department of Marketing, Tourism and Events ManagementUniversity of ChesterCheshireGreat Britain

Personalised recommendations