Correlating Languages and Sentiment Analysis on the Basis of Text-based Reviews

  • Aitor García-PablosEmail author
  • Angelica Lo Duca
  • Montse Cuadros
  • María Teresa Linaza
  • Andrea Marchetti
Conference paper


Customer experiences, in the shape of online reviews, influence other customers and in general, contribute to build a perception of a destination. This work presents the conclusions of a survey to gather user text-based reviews about several categories of destination-related information (accommodation, restaurants, attractions and Points of Interest) from three well-known social media sources (Facebook, FourSquare and GooglePlaces) about eight worldwide destinations with a high overnight rate. Several hypotheses about the correlation between the language and sentiment features of the reviews have been validated over a large dataset of reviews. For example, the analysis detected that the highest number of reviews in a destination is written in the same official language spoken in that place. Furthermore, Dutch speaking people are more positive when writing a review. Finally, English, Italian and Spanish speakers seem to prefer FourSquare while German and French people are quite evenly distributed among FourSquare and GooglePlaces.


Social media Tourist reviews Destinations Sentiment analysis 


  1. Agerri Gascón, R., Cuadros Oller, M., Gaines, S., & Rigau Claramunt, G. (2013). Opener: Open polarity enhanced named entity recognition. Procesamiento del Lenguaje Natural, Revista n° 51 (pp. 215–218)Google Scholar
  2. Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 2, 15–21.CrossRefGoogle Scholar
  3. Cantallops, A. S., & Salvi, F. (2014). New consumer behavior: A review of research one WOM and hotels. International Journal of Hospitality Management, 36, 41–51.CrossRefGoogle Scholar
  4. Filieri, R., & McLeay, F. (2014). E-WOM and accommodation: An analysis of the factors that influence travelers’ adoption of information from online reviews. Journal of Travel Research, 53(1), 44–57.CrossRefGoogle Scholar
  5. Garcıa-Pablos, A., Cuadros, M., & Linaza, M. T. (2015, January). OpeNER: Open tools to perform natural language processing on accommodation. In Information and Communication Technologies in Tourism 2015: Proceedings of the International Conference in Lugano, Switzerland (p. 125). New York: Springer.Google Scholar
  6. Ghose, A., Ipeirotis, P., & Li, B. (2009, September). The economic impact of user-generated content on the Internet: Combining text mining with demand estimation in the hotel industry. In Proceedings of the 20th workshop on information systems and economics (WISE).Google Scholar
  7. Gräbner, D., Zanker, M., Fliedl, G., & Fuchs, M. (2012). Classification of customer reviews based on sentiment analysis. Conference on Information and Communication Technology in Tourism. New York: Springer.Google Scholar
  8. He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464–472.CrossRefGoogle Scholar
  9. Hudson, S., Roth, M. S., Madden, T. J., & Hudson, R. (2015). The effects of social media on emotions, brand relationship quality, and word of mouth: An empirical study of music festival attendees. Tourism Management, 47, 68–76.CrossRefGoogle Scholar
  10. Hvass, K. A., & Munar, A. M. (2012). The takeoff of social media in tourism. Journal of Vacation Marketing, 18(2), 93–103.CrossRefGoogle Scholar
  11. Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59–68.CrossRefGoogle Scholar
  12. Kasper, W., & Vela, M. (2011). Sentiment analysis for hotel reviews. In Computational Linguistics-Applications Conference (pp. 45–52).Google Scholar
  13. Kim, E. E. K., Mattila, A. S., & Baloglu, S. (2011). Effects of gender and expertise on consumers’ motivation to read online hotel reviews. Cornell Hospitality Quarterly, 52(4), 399–406.CrossRefGoogle Scholar
  14. Lee, M. J., Singh, N., & Chan, E. S. (2011). Service failures and recovery actions in the hotel industry: A text-mining approach. Journal of Vacation Marketing, 17(3), 197–207.CrossRefGoogle Scholar
  15. Leung, D., Law, R., Van Hoof, H., & Buhalis, D. (2013). Social media in tourism and hospitality: A literature review. Journal of Travel and Tourism Marketing, 30(1–2), 3–22.CrossRefGoogle Scholar
  16. Levy, S. E., Duan, W., & Boo, S. (2013). An analysis of one-star online reviews and responses in the Washington D.C., lodging market. Cornell Hospitality Quarterly, 54(1), 49–63.CrossRefGoogle Scholar
  17. Litvin, S. W., Goldsmith, R. E., & Pan, B. (2008). Electronic word-of-mouth in hospitality and tourism management. Tourism Management, 29(3), 458–468.CrossRefGoogle Scholar
  18. Liu, B. (2010). Sentiment analysis and subjectivity. In Handbook of natural language processing. Boca: Taylor and Francis GroupGoogle Scholar
  19. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167.CrossRefGoogle Scholar
  20. Liu, S., Law, R., Rong, J., Li, G., & Hall, J. (2013). Analyzing changes in hotel customers’ expectations by trip mode. International Journal of Hospitality Management, 34, 359–371.CrossRefGoogle Scholar
  21. Liu, Z., & Park, S. (2015). What makes a useful online review? Implication for travel product websites. Tourism Management, 47, 140–151.CrossRefGoogle Scholar
  22. Martínez-Cámara, E., Martín-Valdivia, M. T., Urena-López, L. A., & Montejo-Ráez, A. R. (2014). Sentiment analysis in twitter. Natural Language Engineering, 20(01), 1–28.CrossRefGoogle Scholar
  23. Munar, A., Gyimóthy, S., & Cai, L. (2013). Tourism social media: A new research agenda. Tourism Social Media. Tourism Social Science Series (Vol. 18, pp. 1–15). Bingley: Emerald Group Publishing Limited. Google Scholar
  24. Ng, E., & Lien, C. Y. (2014). Impact of social media in service innovations: An empirical study on the Australian hotel industry. In Quality innovation: knowledge, theory, and practices (pp. 390–405). Pennsylvania: IGI Global.Google Scholar
  25. O’Connor, P., 2008. User-generated content and travel: A case study on In: O’Connor, P., Höpken, W., Gretzel, U. (Eds.), Information and communication technologies in tourism, (Vol. 2008, pp. 47–58). Vienna, Austria: Springer.Google Scholar
  26. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135.CrossRefGoogle Scholar
  27. Park, S.-Y., & Allen, J. P. (2013). Responding to online reviews: Problem solving and engagement in hotels. Cornell Hospitality Quarterly, 54(1), 64–73.CrossRefGoogle Scholar
  28. Ramanathan, U., & Ramanathan, R. (2011). Guests’ perceptions on factors influencing customer loyalty: An analysis for UK hotels. International Journal of Contemporary Hospitality Management, 23(1), 7–25.CrossRefGoogle Scholar
  29. Rossetti, M., Stella, F., Cao, L., & Zanker, M. (2015). Analysing user reviews in tourism with topic models. In Information and Communication Technologies in Tourism 2015 (pp. 47–58). Switzerland: Springer International Publishing.Google Scholar
  30. Schuckert, M., Liu, X., & Law, R. (2015). Hospitality and tourism online reviews: Recent trends and future directions. Journal of Travel & Tourism Marketing, 32(5), 608–621.CrossRefGoogle Scholar
  31. Truchot, C. (2002). Key aspects of the use of English in Europe. Unpublished Report, DGIV, Council of Europe, Strasbourg. Available at:
  32. Wirtz, J., & Chew, P. (2002). The effects of incentives, deal proneness, satisfaction and tie-strength on word-of-mouth behavior. International Journal of Service Industry Management, 13(2), 141–162.CrossRefGoogle Scholar
  33. Xiang, Z., & Gretzel, U. (2010). Role of social media in online travel information search. Tourism Management, 31(2), 179–188.CrossRefGoogle Scholar
  34. Ye, Q., Zhang, Z., & Law, R. (2009). Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Systems with Applications, 36(3), 6527–6535.CrossRefGoogle Scholar
  35. Ye, Q., Law, R., Gu, B., & Chen, W. (2011). The influence of user-generated content on traveler behavior: An empirical investigation on the effects of e-word-of-mouth to hotel online bookings. Computers in Human Behavior, 27(2), 634–639.CrossRefGoogle Scholar
  36. Zhang, Z., Zhang, Z., Wang, F., Law, R., & Li, D. (2013). Factors influencing the effective-ness of online group buying in the restaurant industry. International Journal of Hospitality Management, 35, 237–245.CrossRefGoogle Scholar
  37. Zick, A., Küpper, B., & Hövermann, A. (2011). Intolerance, Prejudice and Discrimination-A European Report. Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Aitor García-Pablos
    • 1
    • 2
    Email author
  • Angelica Lo Duca
    • 3
  • Montse Cuadros
    • 1
    • 2
  • María Teresa Linaza
    • 1
    • 2
  • Andrea Marchetti
    • 3
  1. 1.Department of eTourism and Cultural HeritageVicomtech-IK4GipuzkoaSpain
  2. 2.Department of Human Speech and Language TechnologiesVicomtech-IK4GipuzkoaSpain
  3. 3.Institute of Informatics and TelematicsNational Research CouncilPisaItaly

Personalised recommendations