Advertisement

Topic Detection: Identifying Relevant Topics in Tourism Reviews

  • Thomas Menner
  • Wolfram HöpkenEmail author
  • Matthias Fuchs
  • Maria Lexhagen
Conference paper

Abstract

In the past few years, user generated content (UGC) has been taking an increasingly important role in tourism. Traveller’s experiences and opinions about destinations and tourism services support potential customers in their booking decisions. Sentiments can be extracted automatically from UGC and be used as valuable input for managerial decisions. An important subtask of sentiment analysis is the task of topic detection, thus, identifying the topics or product features, like room, service, or food & drink in case of hotel reviews, the review is about. The paper presents an overall approach for extracting topics from touristic UGC, making use of different data mining techniques. The applied data mining techniques are compared and evaluated on the base of hotel reviews regarding the Swedish mountain tourism destination Åre.

Keywords

Topic detection Hotel review User generated content Data mining Text mining 

References

  1. Allan, J., Carbonell, J. G., Doddington, G., Yamron, J., & Yang, Y. (1998). Topic detection and tracking pilot study final report. Proceedings of the Broadcast News Transcription and Understanding Workshop (pp. 194–218).
  2. Blei, D., & Lafferty, J. (2009). Topic models. In A. Srivastava & M. Sahami (Eds.), Text mining—Classification, clustering, and application. Boca Raton: CRC Press.Google Scholar
  3. Cleve, J., & Lämmel, U. (2014). Data mining. München: Oldenbourg Wissenschafts-verlag.CrossRefGoogle Scholar
  4. Deerwester, S., Dumais, S., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–407.CrossRefGoogle Scholar
  5. Dumais, S., Furnas, G., & Landauer, T. (1988). Using latent semantic analysis to improve access to textual information. In J. O’Hare (Ed.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM.Google Scholar
  6. Fuchs, M., Höpken, W., & Lexhagen, M. (2014). Big data analytics for knowledge generation in tourism destinations: A case from Sweden. Journal of Destination Marketing and Management, 3(4), 198–209.CrossRefGoogle Scholar
  7. Hippner, H., & Rentzmann, R. (2006). Text mining. Ingolstadt: Springer.Google Scholar
  8. Höpken, W., Fuchs, M., Keil, D., & Lexhagen, M. (2015). Business intelligence for cross-process knowledge extraction at tourism destination. Journal of Information Technology and Tourism, 15(2), 101–130.CrossRefGoogle Scholar
  9. Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In W. Kim et al. (Eds.), Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM.Google Scholar
  10. Liu, B. (2011). Web data mining: Exploring hyperlinks, contents and usage data (2nd ed.). Chicago: Springer.CrossRefGoogle Scholar
  11. Miner, G., Delen, D., Elder, J., Fast, A., Hill, T., & Nisbet, R. A. (2012). Practical text mining—A business applications approach. Upper Saddle River: Pearson Prentice Hall.Google Scholar
  12. Müller, R. M., & Lenz, H.-J. (2013). Business intelligence. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  13. Panagiotis, S., Kehayov, I., & Manolopoulos, Y. (1999). Text classification by aggregation of SVD Eigenvectors. In J. Eder, I. Rozman, & T. Welzer (Eds.), Advances in databases and information systems: Third East European Conference, ADBIS‘99 Maribor, Slovenia, September 1999. Berlin: Springer.Google Scholar
  14. Schmunk, S., Höpken, W., Fuchs, M., & Lexhagen, M. (2014). Sentiment analysis: Extracting decision-relevant knowledge from UGC. In P. Xiang & I. Tussyadiah (Eds.), Information and communication technologies in tourism 2014 (pp. 253–265). New York: Springer.Google Scholar
  15. Sidali, K. L., Fuchs, M., & Spiller, A. (2012). The effect of electronic reviews on consumer behavior—An explorative study. In M. Sigala, U. Gretzel, & R. Vangelis (Eds.), Web 2.0 in travel, tourism and hospitality: Theory, practices and cases (pp. 239–253). Surrey: Ashgate Publishing.Google Scholar
  16. Sparks, B., Perkins, H., & Buckley, R. (2013). Online travel reviews as persuasive communication: The effects of content type, source and certification logos on consumers behavior. Tourism Management, 39, 1–19.CrossRefGoogle Scholar
  17. Verband Internet Reisevertrieb e.V. (2014). Daten & Fakten zum Online-Reisemarkt. http://www.v-i-r.de/vir-datenfakten-onlinereisemarkt-2014.html. [Sept. 14, 2015].
  18. Wartena, C., & Brussee, R. (2008). Topic detection by clustering keywords. In A. M. Tjoa & R. R. Wagner (Eds.), Nineteenth International Workshop on Database and Expert Systems Applications. IEEE Computer Society: Los Alamitos.Google Scholar
  19. Wu, Y., Zhang, Q., Huang, X., & Wu, L. (2009). Phrase dependency parsing for opinion mining. In P. Koehn & R. Mihalcea (Eds.), Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (pp. 1533–1541). Stroudsburg: ACL.Google Scholar
  20. Xiang, Z., & Gretzel, U. (2010). Role of social media in online travel information search. Tourism Management, 31(2), 179–188.CrossRefGoogle Scholar
  21. Ziebarth, S., Malzahn, N., Zeini, S., & Hoppe, H. U. (2008). Ein empirischer Zugang zur Ermittlung von Kompetenzprofilen in der Digitalen Wirtschaft. In K. Meißner & M. Engelien (Eds.), Virtuelle Organisationen und Neue Medien 2008 (GeNeMe 2008). Dresden: COLLIDE.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Menner
    • 1
  • Wolfram Höpken
    • 1
    Email author
  • Matthias Fuchs
    • 2
  • Maria Lexhagen
    • 2
  1. 1.University of Applied Sciences Ravensburg-WeingartenWeingartenGermany
  2. 2.Mid-Sweden UniversityÖstersundSweden

Personalised recommendations