Skip to main content

Computed Tomographic Angiography in the Assessment of Congenital Heart Disease and Coronary Artery Anomalies

  • Chapter
  • First Online:

Abstract

Advances in medical and surgical care have significantly increased the numbers of children and adults living with congenital heart disease (CHD). This chapter will discuss anatomical and imaging considerations for the major CHD lesions. Additionally, the role of computed tomography in the planning of percutaneous and surgical repairs will be addressed, as well as the use of this modality to monitor for possible post-intervention complications. Finally, clinically significant coronary anomalies will be reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tennant PW, Pearce MS, Bythell M, Rankin J. 20-year survival of children born with congenital anomalies: a population-based study. The Lancet. 1920;375(9715):649–56.

    Article  Google Scholar 

  2. Bird TM, Hobbs CA, Cleves MA, Tilford JM, Robbins JM. National rates of birth defects among hospitalized newborns. Birth Defects Res A Clin Mol Teratol. 2006;76(11):762–9.

    Article  CAS  PubMed  Google Scholar 

  3. Canfield MA, Honein MA, Yuskiv N, Xing J, Mai CT, Collins JS, et al. National estimates and race/ethnic-specific variation of selected birth defects in the United States, 1999–2001. Birth Defects Res A Clin Mol Teratol. 2006;76(11):747–56.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.

    Article  PubMed  Google Scholar 

  5. Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56(14):1149–57.

    Article  PubMed  Google Scholar 

  6. Marelli AJ, Mackie AS, Iwaki H, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163–72.

    Article  PubMed  Google Scholar 

  7. Warnes CA, Liberthson R, Danielson GK, Dore A, Harris L, Hoffman JI, et al. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol. 2001;37(5):1170–5.

    Article  CAS  PubMed  Google Scholar 

  8. van der Bom T, Bouma BJ, Meijboom FJ, Zwinderman AH, Mulder BJ. The prevalence of adult congenital heart disease, results from a systematic review and evidence based calculation. Am Heart J. 2012;164(4):568–75.

    Article  PubMed  Google Scholar 

  9. Ho VB. ACR appropriateness criteria on suspected congenital heart disease in adults. J Am Coll Radiol. 2008;5(2):97–104.

    Article  PubMed  Google Scholar 

  10. Han BK, Lesser AM, Vezmar M, Rosenthal K, Rutten-Ramos SLJ, Caye D, et al. Cardiovascular imaging trends in congenital heart disease: a single center experience. J Cardiovasc Comput Tomogr. 2013;7(6):361–6.

    Article  PubMed  Google Scholar 

  11. Knauth Meadows A, Ordovas K, Higgins CB, Reddy GP. Magnetic resonance imaging in the adult with congenital heart disease. Semin Roentgenol. 2008;43(3):246–58.

    Google Scholar 

  12. Cook SC, Raman SV. Multidetector computed tomography in the adolescent and young adult with congenital heart disease. J Cardiovasc Comput Tomogr. 2008;2(1):36–49.

    Article  PubMed  Google Scholar 

  13. Otero HJ, Steigner ML, Rybicki FJ. The “post-64” era of coronary CT angiography: understanding new technology from physical principles. Radiol Clin North Am. 2009;47(1):79–90.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Raman SV, Cook SC, McCarthy B, Ferketich AK. Usefulness of multidetector row computed tomography to quantify right ventricular size and function in adults with either tetralogy of Fallot or transposition of the great arteries. Am J Cardiol. 2005;95(5):683–6.

    Article  PubMed  Google Scholar 

  15. Hoffmann A, Engelfriet P, Mulder B. Radiation exposure during follow-up of adults with congenital heart disease. Int J Cardiol. 2007;118(2):151–3.

    Article  PubMed  Google Scholar 

  16. Neefjes LA, Dharampal AS, Rossi A, Nieman K, Weustink AC, Dijkshoorn ML, et al. Image quality and radiation exposure using different low-dose scan protocols in dual-source CT coronary angiography: randomized study. Radiology. 2011;261(3):779–86.

    Article  PubMed  Google Scholar 

  17. Khan A, Khosa F, Nasir K, Yassin A, Clouse ME. Comparison of radiation dose and image quality: 320-MDCT versus 64-MDCT coronary angiography. AJR Am J Roentgenol. 2011;197(1):163.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stolzmann P, Goetti R, Baumueller S, Plass A, Falk V, Scheffel H, et al. Prospective and retrospective ECG-gating for CT coronary angiography perform similarly accurate at low heart rates. Eur J Radiol. 2011;79(1):85–91.

    Article  PubMed  Google Scholar 

  19. Hosch W, Heye T, Schulz F, Lehrke S, Schlieter M, Giannitsis E, et al. Image quality and radiation dose in 256-slice cardiac computed tomography: comparison of prospective versus retrospective image acquisition protocols. Eur J Radiol. 2011;80(1):127–35.

    Article  PubMed  Google Scholar 

  20. Choi TY, Malpeso J, Li D, Sourayanezhad S, Budoff MJ. Radiation dose reduction with increasing utilization of prospective gating in 64-multidetector cardiac computed tomography angiography. J Cardiovasc Comput Tomogr. 2011;5(4):264–70.

    Article  PubMed  Google Scholar 

  21. LaBounty TM, Leipsic J, Poulter R, Wood D, Johnson M, Srichai MB, et al. Coronary CT angiography of patients with a normal body mass index using 80 kVp versus 100 kVp: a prospective, multicenter, multivendor randomized trial. Am J Roentgenol. 2011;197(5):W860–7.

    Article  Google Scholar 

  22. Leipsic J, LaBounty TM, Mancini GJ, Heilbron B, Taylor C, Johnson MA, et al. A prospective randomized controlled trial to assess the diagnostic performance of reduced tube voltage for coronary CT angiography. Am J Roentgenol. 2011;196(4):801–6.

    Article  Google Scholar 

  23. Zhang C, Zhang Z, Yan Z, Xu L, Yu W, Wang R. 320-row CT coronary angiography: effect of 100-kV tube voltages on image quality, contrast volume, and radiation dose. Int J Cardiovasc Imaging. 2011;27(7):1059–68.

    Article  PubMed  Google Scholar 

  24. Oda S, Utsunomiya D, Funama Y, Awai K, Katahira K, Nakaura T, et al. A low tube voltage technique reduces the radiation dose at retrospective ECG-gated cardiac computed tomography for anatomical and functional analyses. Acad Rradiol. 2011;18(8):991–9.

    Article  Google Scholar 

  25. Ghadri JR, Küest SM, Goetti R, Fiechter M, Pazhenkottil AP, Nkoulou RN, et al. Image quality and radiation dose comparison of prospectively triggered low-dose CCTA: 128-slice dual-source high-pitch spiral versus 64-slice single-source sequential acquisition. Int J Cardiovasc Imaging. 2012;28(5):1217–25.

    Article  PubMed  Google Scholar 

  26. Van Praagh R. Terminology of congenital heart disease. Glossary and commentary. Circulation. 1977;56(2):139–43.

    Article  PubMed  Google Scholar 

  27. Applegate KE, Goske MJ, Pierce G, Murphy D. Situs revisited: imaging of the heterotaxy syndrome 1. Radiographics. 1999;19(4):837–52.

    Article  CAS  PubMed  Google Scholar 

  28. Tynan MJ, Becker AE, Macartney FJ, Jimenez MQ, Shinebourne EA, Anderson RH. Nomenclature and classification of congenital heart disease. Br Heart J. 1979;41(5):544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Meter JC, LeBlanc JG, Culpepper 3rd WS, Ochsner JL. Partial anomalous pulmonary venous return. Circulation. 1990;82(5 Suppl):IV195–8.

    PubMed  Google Scholar 

  30. Broy C, Bennett S. Partial anomalous pulmonary venous return. Mil Med. 2008;173(6):523–4.

    Article  PubMed  Google Scholar 

  31. Shumacker HB. Partial anomalous pulmonary venous return. Chest J. 1966;49(3):309–16.

    Article  Google Scholar 

  32. Gustafson RA, Warden HE, Murray GF, Hill RC, Rozar GE. Partial anomalous pulmonary venous connection to the right side of the heart. J Thorac Cardiovasc Surg. 1989;98(5 Pt 2):861–8.

    CAS  PubMed  Google Scholar 

  33. Lacomis JM, Wigginton W, Fuhrman C, Schwartzman D, Armfield DR, Pealer KM. Multi-detector row CT of the left atrium and pulmonary veins before radio-frequency catheter ablation for atrial fibrillation. Radiographics. 2003;23(suppl_1):S35–48.

    Article  PubMed  Google Scholar 

  34. Brown David W, Geva T. Anomalies of the pulmonary veins. In: Allen Hugh D, Driscoll DJ, Shaddy Robert E, Feltes Timothy F, editors. Moss and Adams’ heart disease in infants, children and adolescents. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 809–39.

    Google Scholar 

  35. Webb G, Gatzoulis MA. Atrial septal defects in the adult recent progress and overview. Circulation. 2006;114(15):1645–53.

    Article  PubMed  Google Scholar 

  36. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease) Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(23):e143–263.

    Article  PubMed  Google Scholar 

  37. King TD, Thompson SL, Steiner C, Mills NL. Secundum atrial septal defect: nonoperative closure during cardiac catheterization. JAMA. 1976;235(23):2506–9.

    Article  CAS  PubMed  Google Scholar 

  38. Du ZD, Hijazi ZM, Kleinman CS, Silverman NH, Larntz K. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: results of a multicenter nonrandomized trial. J Am Coll Cardiol. 2002;39(11):1836–44.

    Article  PubMed  Google Scholar 

  39. Gade CL, Bergman G, Naidu S, Weinsaft JW, Callister TQ, Min JK. Comprehensive evaluation of atrial septal defects in individuals undergoing percutaneous repair by 64-detector row computed tomography. Int J Cardiovasc Imaging. 2007;23(3):397–404.

    Article  PubMed  Google Scholar 

  40. Zaidi AN, Cheatham JP, Raman SV, Cook SC. Multislice computed tomographic findings in symptomatic patients after amplatzer septal occluder device implantation. J Interv Cardiol. 2009;22(1):92–7.

    Article  PubMed  Google Scholar 

  41. Butera G, Carminati M, Chessa M, Piazza L, Micheletti A, Negura DG, et al. Transcatheter closure of perimembranous ventricular septal defects: early and long-term results. J Am Coll Cardiol. 2007;50(12):1189–95.

    Article  PubMed  Google Scholar 

  42. Holzer R, Balzer D, Cao QL, Lock K, Hijazi ZM. Device closure of muscular ventricular septal defects using the amplatzer muscular ventricular septal defect occluder: immediate and mid-term results of a US registry. J Am Coll Cardiol. 2004;43(7):1257–63.

    Article  PubMed  Google Scholar 

  43. Craig B. Atrioventricular septal defect: from fetus to adult. Heart. 2006;92(12):1879–85.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Freeman SB, Taft LF, Dooley KJ, Allran K, Sherman SL, Hassold TJ, et al. Population-based study of congenital heart defects in Down syndrome. Am J Med Genet. 1998;80(3):213–7.

    Article  CAS  PubMed  Google Scholar 

  45. Grifka R, Transcatheter PDA. Closure: equipment and technique. J Interv Cardiol. 2001;14(1):97–107.

    Article  CAS  PubMed  Google Scholar 

  46. Mori K, Ando M, Takao A, Ishikawa S, Imai Y. Distal type of aortopulmonary window. Report of 4 cases. Br Heart J. 1978;40(6):681–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berry TE, Bharati S, Muster AJ, Idriss FS, Santucci B, Lev M, et al. Distal aortopulmonary septal defect, aortic origin of the right pulmonary artery, intact ventricular septum, patent ductus arteriosus and hypoplasia of the aortic isthmus: a newly recognized syndrome. Am J Cardiol. 1982;49(1):108–16.

    Article  CAS  PubMed  Google Scholar 

  48. Bertolini A, Dalmonte P, Bava GL, Moretti R, Cervo G, Marasini M. Aortopulmonary septal defects. A review of the literature and report of ten cases. J Cardiovasc Surg (Torino). 1994;35(3):207–13.

    CAS  Google Scholar 

  49. Blieden LC, Moller JH. Aorticopulmonary septal defect. An experience with 17 patients. Br Heart J. 1974;36(7):630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rao PS. Coarctation of the aorta. Curr Cardiol Rep. 2005;7(6):425–34.

    Article  PubMed  Google Scholar 

  51. Hamdan MA, Maheshwari S, Fahey JT, Hellenbrand WE. Endovascular stents for coarctation of the aorta: initial results and immediate-term follow-up. J Am Coll Cardiol. 2001;38(5):1518–23.

    Article  CAS  PubMed  Google Scholar 

  52. Chessa M, Carrozza M, Butera G, Pizza L, Negura DG, Bussadori C, et al. Results and mid-long-term follow-up of stent implantation for native and recurrent coarctation of the aorta. Eur Heart J. 2014;26(24):2728–32.

    Article  Google Scholar 

  53. Forbes TJ, Moore P, Pedra CA, Zahn EM, Nykanen D, Amin Z, et al. Intermediate follow-up following intravascular stenting for treatment of coarctation of the aorta. Catheter Cardiovasc Interv. 2007;70(4):569–77.

    Article  PubMed  Google Scholar 

  54. Forbes TJ, Garekar S, Amin Z, Zahn EM, Nykanen D, Moore P, et al. Procedural results and acute complications in stenting native and recurrent coarctation of the aorta in patients over 4 years of age: a multi-institutional study. Catheter Cardiovasc Interv. 2007;70(2):276–85.

    Article  PubMed  Google Scholar 

  55. Forbes TJ, Kim DW, Du W, Turner DR, Holzer R, Amin Z, et al. Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (Congenital Cardiovascular Interventional Study Consortium). J Am Coll Cardiol. 2011;58(25):2664–74.

    Article  PubMed  Google Scholar 

  56. Cohen MARC, Fuster V, Steele PM, Driscoll D, McGoon DC. Coarctation of the aorta. Long-term follow-up and prediction of outcome after surgical correction. Circulation. 1989;80(4):840–5.

    Article  CAS  PubMed  Google Scholar 

  57. Sebastiá C, Quiroga S, Boyé R, Perez-Lafuente M, Castellà E, Alvarez-Castells A. Aortic stenosis: spectrum of diseases depicted at multisection CT. Radiographics. 2003;23(Suppl_1):S79–91.

    Article  PubMed  Google Scholar 

  58. Weinberg Paul M, Natarajan S, Rogers Lindsay S. Aortic arch and vascular anomalies. In: Allen Hugh D, Driscoll DJ, Shaddy Robert E, Feltes Timothy F, editors. Moss and Adams’ heart disease in infants, children, and adolescents. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 758–98.

    Google Scholar 

  59. Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55(25):2789–800.

    Article  PubMed  Google Scholar 

  60. Duran AC, Frescura C, Sans-Coma V, Angelini A, Basso C, Thiene G. Bicuspid aortic valves in hearts with other congenital heart disease. J Heart Valve Dis. 1995;4(6):581–90.

    CAS  PubMed  Google Scholar 

  61. Roberts WC. The congenitally bicuspid aortic valve: a study of 85 autopsy cases. Am J Cardiol. 1970;26(1):72–83.

    Article  CAS  PubMed  Google Scholar 

  62. Feuchtner GM, Müeller S, Bonatti J, Schachner T, Velik-Salchner C, Pachinger O, et al. Sixty-four slice CT evaluation of aortic stenosis using planimetry of the aortic valve area. Am J Roentgenol. 2007;189(1):197–203.

    Article  Google Scholar 

  63. Newfeld EA, Muster AJ, Paul MH, Idriss FS, Riker WL. Discrete subvalvular aortic stenosis in childhood: study of 51 patients. Am J Cardiol. 1976;38(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  64. Kelly DT, Wulfsberc E, ROWE RD. Discrete subaortic stenosis. Circulation. 1972;46(2):309–22.

    Article  CAS  PubMed  Google Scholar 

  65. Cohen L, Bennani R, Hulin S, Malergue MC, Yemets I, Kalangos A, et al. Mitral valvar anomalies and discrete subaortic stenosis. Cardiol Young. 2002;12(02):138–46.

    Article  PubMed  Google Scholar 

  66. Marasini M, Zannini L, Ussia GP, Pinto R, Moretti R, Lerzo F, et al. Discrete subaortic stenosis: incidence, morphology and surgical impact of associated subaortic anomalies. Ann Thorac Surg. 2003;75(6):1763–8.

    Article  PubMed  Google Scholar 

  67. Williams JCP, Barratt-Boyes BG, Lowe JB. Supravalvular aortic stenosis. Circulation. 1961;24(6):1311–8.

    Article  CAS  PubMed  Google Scholar 

  68. Beuren AJ, Schulze C, Eberle P, Harmjanz D, Apitz J. The syndrome of supravalvular aortic stenosis, peripheral pulmonary stenosis, mental retardation and similar facial appearance. Am J Cardiol. 1964;13(4):471–83.

    Article  CAS  PubMed  Google Scholar 

  69. Gikonyo BM, Lucas RV, Edwards JE. Anatomic features of congenital pulmonary valvar stenosis. Pediatr Cardiol. 1987;8(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  70. Noonan JA. Hypertelorism with Turner phenotype: a new syndrome with associated congenital heart disease. American Journal of Diseases of Children. 1968;116(4):373–80.

    Article  CAS  PubMed  Google Scholar 

  71. Mendez HM, Opitz JM, Reynolds JF. Noonan syndrome: a review. Am J Med Genet. 1985;21(3):493–506.

    Article  CAS  PubMed  Google Scholar 

  72. Burch M, Sharland M, Shinebourne E, Smith G, Patton M, McKenna W. Cardiologic abnormalities in Noonan syndrome: phenotypic diagnosis and echocardiographic assessment of 118 patients. J Am Coll Cardiol. 1993;22(4):1189–92.

    Article  CAS  PubMed  Google Scholar 

  73. Dabizzi RP, Caprioli G, Aiazzi L, Castelli C, Baldrighi G, Parenzan L, et al. Distribution and anomalies of coronary arteries in tetralogy of fallot. Circulation. 1980;61(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  74. Fellows KE, Freed MD, Keane JF, Praagh R, Bernhard WF, Castaneda AC. Results of routine preoperative coronary angiography in tetralogy of Fallot. Circulation. 1975;51(3):561–6.

    Article  CAS  PubMed  Google Scholar 

  75. Hurwitz RA, Smith W, King H, Girod DA, Caldwell RL. Tetralogy of Fallot with abnormal coronary artery: 1967 to 1977. J Thorac Cardiovasc Surg. 1980;80(1):129–34.

    CAS  PubMed  Google Scholar 

  76. Lurz P, Bonhoeffer P, Taylor AM. Percutaneous pulmonary valve implantation: an update. Expert Rev Cardiovasc Ther. 2009;7(7):823–33.

    Article  PubMed  Google Scholar 

  77. Wittwer ED, Pulido JN, Gillespie SM, Cetta F, Dearani JA. Left main coronary artery compression following Melody pulmonary valve implantation: use of Impella support as rescue therapy and perioperative challenges with ECMO. Case Rep Crit Care 2014 (2014), Article ID 959704, 3 pages.

    Google Scholar 

  78. Morray BH, McElhinney DB, Cheatham JP, Zahn EM, Berman DP, Sullivan PM, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation a multicenter experience. Circ Cardiovasc Interv. 2013;6(5):535–42.

    Article  PubMed  Google Scholar 

  79. Niwa K, Siu SC, Webb GD, Gatzoulis MA. Progressive aortic root dilatation in adults late after repair of tetralogy of fallot. Circulation. 2002;106(11):1374–8.

    Article  PubMed  Google Scholar 

  80. Tan JL, Davlouros PA, McCarthy KP, Gatzoulis MA, Ho SY. Intrinsic histological abnormalities of aortic root and ascending aorta in tetralogy of fallot: evidence of causative mechanism for aortic dilatation and aortopathy. Circulation. 2005;112(7):961–8.

    Google Scholar 

  81. Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol. 1989;64(8):507–12.

    Article  CAS  PubMed  Google Scholar 

  82. Mongeon FP, Gurvitz MZ, Broberg CS, Aboulhosn J, Opotowsky AR, Kay JD, et al. Aortic root dilatation in adults with surgically repaired tetralogy of Fallot: a multicenter cross-sectional study. Circulation. 2013;127(2):172–9.

    Article  PubMed  Google Scholar 

  83. Bashore TM. Adult congenital heart disease right ventricular outflow tract lesions. Circulation. 2007;115(14):1933–47.

    Article  PubMed  Google Scholar 

  84. Van Praagh R, Pérez-Trevino C, Reynolds JL, Moes CAF, Keith JD, Roy DL, et al. Double outlet right ventricle {S, D, L} with subaortic ventricular septal defect and pulmonary stenosis: report of six cases. Am J Cardiol. 1975;35(1):42–53.

    Article  PubMed  Google Scholar 

  85. Sondheimer HM, Freedom RM, Olley PM. Double outlet right ventricle: clinical spectrum and prognosis. Am J Cardiol. 1977;39(5):709–14.

    Article  CAS  PubMed  Google Scholar 

  86. Zamora R, Moller JH, Edwards JE. Double-outlet right ventricle anatomic types and associated anomalies. Chest J. 1975;68(5):672–7.

    Article  Google Scholar 

  87. Losay J, Touchot A, Serraf A, Litvinova A, Lambert V, Piot JD, et al. Late outcome after arterial switch operation for transposition of the great arteries. Circulation. 2001;104 Suppl 1:I-121.

    CAS  Google Scholar 

  88. Kirklin JW, Blackstone EH, Tchervenkov CI, Castaneda AR. Clinical outcomes after the arterial switch operation for transposition. Patient, support, procedural, and institutional risk factors. Congenital Heart Surgeons Society. Circulation. 1992;86(5):1501–15.

    Google Scholar 

  89. Prifti E, Crucean A, Bonacchi M, Bernabei M, Murzi B, Luisi SV, et al. Early and long term outcome of the arterial switch operation for transposition of the great arteries: predictors and functional evaluation. Eur J Cardiothorac Surg. 2002;22(6):864–73.

    Article  PubMed  Google Scholar 

  90. Schwartz ML, Gauvreau K, del Nido P, Mayer JE, Colan SD. Long-term predictors of aortic root dilation and aortic regurgitation after arterial switch operation. Circulation. 2004;110(11 Suppl 1):II-128.

    Google Scholar 

  91. Ou P, Celermajer DS, Marini D, Agnoletti G, Vouhé P, Brunelle F, et al. Safety and accuracy of 64-slice computed tomography coronary angiography in children after the arterial switch operation for transposition of the great arteries. JACC Cardiovasc Imaging. 2008;1(3):331–9.

    Article  PubMed  Google Scholar 

  92. Allwork SP, Bentall HH, Becker AE, Cameron H, Gerlis LM, Wilkinson JL, et al. Congenitally corrected transposition of the great arteries: morphologic study of 32 cases. Am J Cardiol. 1976;38(7):910–23.

    Article  CAS  PubMed  Google Scholar 

  93. Schiebler GL, Edwards JE, Burchell HB, DuShane JW, Ongley PA, Wood EH. Congenital corrected transposition of the great vessels: a study of 33 cases. Pediatrics. 1961;27(5):851–88.

    Google Scholar 

  94. Bjarke BB, Kidd BSL. Congenitally corrected transposition of the great arteries a clinical study of 101 cases. Acta Paediatr. 1976;65(2):153–60.

    Article  CAS  Google Scholar 

  95. Van Praagh R, Papagiannis J, Grünenfelder J, Bartram U, Martanovic P. Pathologic anatomy of corrected transposition of the great arteries: medical and surgical implications. Am Heart J. 1998;135(5):772–85.

    Article  PubMed  Google Scholar 

  96. Graham TP, Bernard YD, Mellen BG, Celermajer D, Baumgartner H, Cetta F, et al. Long-term outcome in congenitally corrected transposition of the great arteries: a multi-institutional study. J Am Coll Cardiol. 2000;36(1):255–61.

    Article  PubMed  Google Scholar 

  97. Presbitero P, Somerville J, Rabajoli F, Stone S, Conte MR. Corrected transposition of the great arteries without associated defects in adult patients: clinical profile and follow up. Br Heart J. 1995;74(1):57–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Collett RW, Edwards JE. Persistent truncus arteriosus; a classification according to anatomic types. Surg Clin North Am. 1949;29(4):1245.

    CAS  PubMed  Google Scholar 

  99. Tchervenkov CI, Jacobs JP, Weinberg PM, Aiello VD, Béland MJ, Colan SD, et al. The nomenclature, definition and classification of hypoplastic left heart syndrome. Cardiol Young. 2006;16(04):339–68.

    Article  PubMed  Google Scholar 

  100. Blalock A, Taussig HB. The surgical treatment of malformations of the heart: in which there is pulmonary stenosis or pulmonary atresia. JAMA. 1945;128(3):189–202.

    Article  Google Scholar 

  101. Khairy P, Poirier N, Mercier LAE. Univentricular heart. Circulation. 2007;115(6):800–12.

    Article  PubMed  Google Scholar 

  102. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26(3):240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grosse-Wortmann L, Al-Otay A, Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion quantification with MRI. Circ Cardiovasc Imaging. 2009;2(3):219–25.

    Article  PubMed  Google Scholar 

  104. Triedman JK, Bridges ND, Mayer JE, Lock JE. Prevalence and risk factors for aortopulmonary collateral vessels after Fontan and bidirectional Glenn procedures. J Am Coll Cardiol. 1993;22(1):207–15.

    Article  CAS  PubMed  Google Scholar 

  105. McElhinney DB, Reddy VM, Hanley FL, Moore P. Systemic venous collateral channels causing desaturation after bidirectional cavopulmonary anastomosis: evaluation and management. J Am Coll Cardiol. 1997;30(3):817–24.

    Article  CAS  PubMed  Google Scholar 

  106. Spevak PJ, Johnson PT, Fishman EK. Surgically corrected congenital heart disease: utility of 64-MDCT. Am J Roentgenol. 2008;191(3):854–61.

    Article  Google Scholar 

  107. Greenberg SB, Bhutta ST. A dual contrast injection technique for multidetector computed tomography angiography of Fontan procedures. Int J Cardiovasc Imaging. 2008;24(3):345–8.

    Article  CAS  PubMed  Google Scholar 

  108. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn. 1990;21(1):28–40.

    Article  CAS  PubMed  Google Scholar 

  109. Click RL, Holmes DR, Vlietstra RE, Kosinski AS, Kronmal RA. Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival: a report from the Coronary Artery Surgery Study. J Am Coll Cardiol. 1989;13(3):531–7.

    Article  CAS  PubMed  Google Scholar 

  110. Baitaxe HA, Wixson D. The incidence of congenital anomalies of the coronary arteries in the adult population 1. Radiology. 1977;122(1):47–52.

    Article  Google Scholar 

  111. Engel HJ, Torres C, Page HL. Major variations in anatomical origin of the coronary arteries: angiographic observations in 4,250 patients without associated congenital heart disease. Cathet Cardiovasc Diagn. 1975;1(2):157–69.

    Article  CAS  PubMed  Google Scholar 

  112. Angelini P, Villason S, Chan AV, Diez JG. Normal and anomalous coronary arteries in humans. In: Angelini P, editor. Coronary artery anomalies: a comprehensive approach. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 27–150.

    Google Scholar 

  113. Van Camp SP, Bloor CM, Mueller FO, Cantu RC, Olson HG. Nontraumatic sports death in high school and college athletes. Med Sci Sports Exerc. 1995;27(5):641–7.

    PubMed  Google Scholar 

  114. Maron BJ, Thompson PD, Puffer JC, McGrew CA, Strong WB, Douglas PS, et al. Cardiovascular preparticipation screening of competitive athletes a statement for health professionals from the Sudden Death Committee (clinical cardiology) and Congenital Cardiac Defects Committee (cardiovascular disease in the young). American Heart Association. Circulation. 1996;94(4):850–6.

    Article  CAS  PubMed  Google Scholar 

  115. Burke AP, Farb A, Virmani R, Goodin J, Smialek JE. Sports-related and non-sports-related sudden cardiac death in young adults. Am Heart J. 1991;121(2):568–75.

    Article  CAS  PubMed  Google Scholar 

  116. Angelini P, Velasco JA, Flamm S. Coronary anomalies incidence, pathophysiology, and clinical relevance. Circulation. 2002;105(20):2449–54.

    Article  PubMed  Google Scholar 

  117. Bland EF, White PD, Garland J. Congenital anomalies of the coronary arteries: report of an unusual case associated with cardiac hypertrophy. Am Heart J. 1933;8(6):787–801.

    Article  Google Scholar 

  118. Fierens C, Budts W, Denef B, Van de Werf F. A 72 year old woman with ALCAPA. Heart. 2000;83(1):e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kristensen T, Kofoed KF, Helqvist S, Helvind M, Søndergaard L. Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) presenting with ventricular fibrillation in an adult: a case report. J Cardiothorac Surg. 2008;3:33.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Selzman CH, Zimmerman MA, Campbell DN. ALCAPA in an adult with preserved left ventricular function. J Card Surg. 2003;18(1):25–8.

    Article  PubMed  Google Scholar 

  121. Kang WC, Chung WJ, Choi CH, Park KY, Jeong MJ, Ahn TH, et al. A rare case of anomalous left coronary artery from the pulmonary artery (ALCAPA) presenting congestive heart failure in an adult. Int J Cardiol. 2007;115(2):e63–7.

    Article  PubMed  Google Scholar 

  122. Williams IA, Gersony WM, Hellenbrand WE. Anomalous right coronary artery arising from the pulmonary artery: a report of 7 cases and a review of the literature. Am Heart J. 2006;152(5):1004.e9.

    Article  Google Scholar 

  123. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115:1296–305.

    PubMed  Google Scholar 

  124. Lipton MJ, Barry WH, Obrez I, Silverman JF, Wexler L. Isolated single coronary artery: diagnosis, angiographic classification, and clinical significance 1. Radiology. 1979;130(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  125. Desmet W, Vanhaecke J, Vrolix M, Van de Werf F, Piessens J, Willems J, et al. Isolated single coronary artery: a review of 50 000 consecutive coronary angiographies. Eur Heart J. 1992;13(12):1637–40.

    CAS  PubMed  Google Scholar 

  126. Sharbaugh AH, White RS. Single coronary artery: analysis of the anatomic variation, clinical importance, and report of five cases. JAMA. 1974;230(2):243–6.

    Article  CAS  PubMed  Google Scholar 

  127. Kragel AH, Roberts WC. Anomalous origin of either the right or left main coronary artery from the aorta with subsequent coursing between aorta and pulmonary trunk: analysis of 32 necropsy cases. Am J Cardiol. 1988;62(10):771–7.

    Article  CAS  PubMed  Google Scholar 

  128. Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of Valsalva A not-so-minor congenital anomaly. Circulation. 1974;50(4):780–7.

    Article  CAS  PubMed  Google Scholar 

  129. Frescura C, Basso C, Thiene G, Corrado D, Pennelli T, Angelini A, et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol. 1998;29(7):689–95.

    Article  CAS  PubMed  Google Scholar 

  130. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35(6):1493–501.

    Article  CAS  PubMed  Google Scholar 

  131. Taylor AJ, Rogan KM, Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol. 1992;20(3):640–7.

    Article  CAS  PubMed  Google Scholar 

  132. Eckart RE, Scoville SL, Campbell CL, Shry EA, Stajduhar KC, Potter RN, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141(11):829–34.

    Article  PubMed  Google Scholar 

  133. Drory Y, Turetz Y, Hiss Y, Lev B, Fisman EZ, Pines A, et al. Sudden unexpected death in persons < 40 years of age. Am J Cardiol. 1991;68(13):1388–92.

    Article  CAS  PubMed  Google Scholar 

  134. Wernovsky G, Sanders SP. Coronary artery anatomy and transposition of the great arteries. Coron Artery Dis. 1993;4(2):148–58.

    Article  CAS  PubMed  Google Scholar 

  135. Legendre A, Losay J, Touchot-Kone A, Serraf A, Belli E, Piot JD, et al. Coronary events after arterial switch operation for transposition of the great arteries. Circulation. 2003;108(10 Suppl 1):II-186.

    Google Scholar 

  136. Brown JW, Park HJ, Turrentine MW. Arterial switch operation: factors impacting survival in the current era. Ann Thorac Surg. 2001;71(6):1978–84.

    Article  CAS  PubMed  Google Scholar 

  137. Yamaguchi M, Hosokawa Y, Imai Y, Kurosawa H, Yasui H, Yagihara T, et al. Early and midterm results of the arterial switch operation for transposition of the great arteries in Japan. J Thorac Cardiovasc Surg. 1990;100(2):261–9.

    CAS  PubMed  Google Scholar 

  138. Prêtre R, Tamisier D, Bonhoeffer P, Mauriat P, Pouard P, Sidi D, et al. Results of the arterial switch operation in neonates with transposed great arteries. The Lancet. 2001;357(9271):1826–30.

    Article  Google Scholar 

  139. Von Bernuth G. 25 years after the first arterial switch procedure: mid-term results. Thorac Cardiovasc Surg. 2000;48(04):228–32.

    Article  Google Scholar 

  140. Mayer Jr JE, Sanders SP, Jonas RA, Castaneda AR, Wernovsky G. Coronary artery pattern and outcome of arterial switch operation for transposition of the great arteries. Circulation. 1990;82(5 Suppl):IV139–45.

    PubMed  Google Scholar 

  141. Tanel RE, Wernovsky G, Landzberg MJ, Perry SB, Burke RP. Coronary artery abnormalities detected at cardiac catheterization following the arterial switch operation for transposition of the great arteries. Am J Cardiol. 1995;76(3):153–7.

    Article  CAS  PubMed  Google Scholar 

  142. Hauser M, Bengel FM, Kühn A, Sauer U, Zylla S, Braun SL, et al. Myocardial blood flow and flow reserve after coronary reimplantation in patients after arterial switch and Ross operation. Circulation. 2001;103(14):1875–80.

    Article  CAS  PubMed  Google Scholar 

  143. Meng CCL, Eckner FAO, Lev M. Coronary artery distribution in tetralogy of Fallot. Arch Surg. 1965;90(3):363–6.

    Article  CAS  PubMed  Google Scholar 

  144. Humes RA, Driscoll DJ, Danielson GK, Puga FJ. Tetralogy of Fallot with anomalous origin of left anterior descending coronary artery. Surgical options. J Thorac Cardiovasc Surg. 1987;94(5):784–7.

    CAS  PubMed  Google Scholar 

  145. Scott LD, Paul MG. Congenital anomalies of the coronary vessels and the aortic root. In: Allen Hugh D, Driscoll DJ, Shaddy Robert E, Feltes Timothy F, editors. Moss and Adams’ heart disease in infants, children and adolescents. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 746–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Pillutla MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Pillutla, P., Cook, S.C. (2016). Computed Tomographic Angiography in the Assessment of Congenital Heart Disease and Coronary Artery Anomalies. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-28219-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28219-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28217-6

  • Online ISBN: 978-3-319-28219-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics