Skip to main content

Cardiothoracic Surgery Applications: Virtual CT Imaging Approaches to Procedural Planning

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

Cardiovascular computed tomographic angiography (CCTA) has led to a paradigm shift in planning and performance of cardiothoracic surgical procedures, providing information essential to decisions regarding surgical intervention. As the operating room and interventional cardiology laboratory have evolved, merging into a hybrid space, CCTA has assumed an essential role in determination of the optimal therapeutic modality and path of approach for percutaneous, minimally invasive robotic and open surgical approaches in this setting. CCTA has particular significance to planning of reoperation for coronary artery disease, valvular heart disease, pericardial disease, congenital heart disease, cardiac masses, and advanced heart failure. Communication of the data beyond the written report can be achieved through images relevant for orientation and interventional approach. Review of these virtual views with the multidisciplinary team is important for maximal application and impact of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roselli EE, Pettersson GB, Blackstone EH, Brizzio ME, Houghtaling PL, Hauck R, et al. Adverse events during reoperative cardiac surgery: frequency, characterization, and rescue. J Thorac Cardiovasc Surg. 2008;135(2):316–23, 23 e1–6.

    Article  PubMed  Google Scholar 

  2. Sabik 3rd JF, Blackstone EH, Houghtaling PL, Walts PA, Lytle BW. Is reoperation still a risk factor in coronary artery bypass surgery? Ann Thorac Surg. 2005;80(5):1719–27.

    Article  PubMed  Google Scholar 

  3. Kamdar AR, Meadows TA, Roselli EE, Gorodeski EZ, Curtin RJ, Sabik JF, et al. Multidetector computed tomographic angiography in planning of reoperative cardiothoracic surgery. Ann Thorac Surg. 2008;85(4):1239–45.

    Article  PubMed  Google Scholar 

  4. Gasparovic H, Rybicki FJ, Millstine J, Unic D, Byrne JG, Yucel K, et al. Three dimensional computed tomographic imaging in planning the surgical approach for redo cardiac surgery after coronary revascularization. Eur J CardioThorac Surg. 2005;28(2):244–9.

    Article  PubMed  Google Scholar 

  5. Mack MJ, Leon MB, Smith CR, Miller DC, Moses JW, Tuzcu EM, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2477–84.

    Google Scholar 

  6. Kapadia SR, Leon MB, Makkar RR, Tuzcu EM, Svensson LG, Kodali S, et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2485–91.

    Google Scholar 

  7. Chieffo A, Buchanan GL, Van Mieghem NM, Tchetche D, Dumonteil N, Latib A, et al. Transcatheter aortic valve implantation with the Edwards SAPIEN versus the Medtronic CoreValve Revalving system devices: a multicenter collaborative study: the PRAGMATIC Plus Initiative (Pooled-RotterdAm-Milano-Toulouse In Collaboration). J Am Coll Cardiol. 2013;61(8):830–6.

    Article  PubMed  Google Scholar 

  8. Kurra V, Schoenhagen P, Roselli EE, Kapadia SR, Tuzcu EM, Greenberg R, et al. Prevalence of significant peripheral artery disease in patients evaluated for percutaneous aortic valve insertion: preprocedural assessment with multidetector computed tomography. J Thorac Cardiovasc Surg. 2009;137(5):1258–64.

    Article  PubMed  Google Scholar 

  9. Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, Leipsic JA. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr. 2012;6(6):366–80.

    Article  PubMed  Google Scholar 

  10. Blanke P, Russe M, Leipsic J, Reinohl J, Ebersberger U, Suranyi P, et al. Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2012;5(9):984–94.

    Article  PubMed  Google Scholar 

  11. Blanke P, Schoepf UJ, Leipsic JA. CT in transcatheter aortic valve replacement. Radiology. 2013;269(3):650–69.

    Article  PubMed  Google Scholar 

  12. Watanabe Y, Lefevre T, Arai T, Hayashida K, Bouvier E, Hovasse T, et al. Can we predict post-procedural paravalvular leak after Edwards Sapien transcatheter aortic valve implantation? Catheter Cardiovasc Interv. 2015;86(1):144–51.

    Google Scholar 

  13. Azzalini L, Ghoshhajra BB, Elmariah S, Passeri JJ, Inglessis I, Palacios IF, et al. The aortic valve calcium nodule score (AVCNS) independently predicts paravalvular regurgitation after transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr. 2014;8(2):131–40.

    Article  PubMed  Google Scholar 

  14. Anger T, Bauer V, Plachtzik C, Geisler T, Gawaz M, Oberhoff M, et al. Non-invasive and invasive predictors of paravalvular regurgitation post CoreValve(R) stent prosthesis implantation in aortic valves. J Interv Cardiol. 2014;27(3):275–83.

    Article  PubMed  Google Scholar 

  15. Binder RK, Webb JG, Willson AB, Urena M, Hansson NC, Norgaard BL, et al. The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial. J Am Coll Cardiol. 2013;62(5):431–8.

    Article  PubMed  Google Scholar 

  16. Dvir D, Webb JG, Piazza N, Blanke P, Barbanti M, Bleiziffer S, et al. Multicenter evaluation of transcatheter aortic valve replacement using either SAPIEN XT or CoreValve: degree of device oversizing by computed-tomography and clinical outcomes. Catheteriz Cardiovasc Interv. 2015;86:508–15.

    Article  Google Scholar 

  17. Barbanti M, Yang TH, Rodes Cabau J, Tamburino C, Wood DA, Jilaihawi H, et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation. 2013;128(3):244–53.

    Article  PubMed  Google Scholar 

  18. Tops LF, Wood DA, Delgado V, Schuijf JD, Mayo JR, Pasupati S, et al. Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging. 2008;1(3):321–30.

    Article  PubMed  Google Scholar 

  19. Akhtar M, Tuzcu EM, Kapadia SR, Svensson LG, Greenberg RK, Roselli EE, et al. Aortic root morphology in patients undergoing percutaneous aortic valve replacement: evidence of aortic root remodeling. J Thorac Cardiovasc Surg. 2009;137(4):950–6.

    Article  PubMed  Google Scholar 

  20. Wood DA, Tops LF, Mayo JR, Pasupati S, Schalij MJ, Humphries K, et al. Role of multislice computed tomography in transcatheter aortic valve replacement. Am J Cardiol. 2009;103(9):1295–301.

    Article  PubMed  Google Scholar 

  21. Masson JB, Kovac J, Schuler G, Ye J, Cheung A, Kapadia S, et al. Transcatheter aortic valve implantation: review of the nature, management, and avoidance of procedural complications. JACC Cardiovasc Interv. 2009;2(9):811–20.

    Article  PubMed  Google Scholar 

  22. Stabile E, Sorropago G, Cioppa A, Cota L, Agrusta M, Lucchetti V, et al. Acute left main obstructions following TAVI. EuroIntervention. 2010;6(1):100–5.

    Article  PubMed  Google Scholar 

  23. Testa L, Latib A, De Marco F, De Carlo M, Agnifili M, Latini RA, et al. Clinical impact of persistent left bundle-branch block after transcatheter aortic valve implantation with CoreValve Revalving System. Circulation. 2013;127(12):1300–7.

    Article  PubMed  Google Scholar 

  24. Latsios G, Gerckens U, Buellesfeld L, Mueller R, John D, Yuecel S, et al. “Device landing zone” calcification, assessed by MSCT, as a predictive factor for pacemaker implantation after TAVI. Catheter Cardiovasc Interv. 2010;76(3):431–9.

    Article  PubMed  Google Scholar 

  25. Guetta V, Goldenberg G, Segev A, Dvir D, Kornowski R, Finckelstein A, et al. Predictors and course of high-degree atrioventricular block after transcatheter aortic valve implantation using the CoreValve Revalving System. Am J Cardiol. 2011;108(11):1600–5.

    Article  PubMed  Google Scholar 

  26. Freeman M, Webb JG, Willson AB, Wheeler M, Blanke P, Moss RR, et al. Multidetector CT predictors of prosthesis-patient mismatch in transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2013;7(4):248–55.

    Article  PubMed  Google Scholar 

  27. Nazif TM, Dizon JM, Hahn RT, Xu K, Babaliaros V, Douglas PS, et al. Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic TraNscathetER Valves) trial and registry. JACC Cardiovasc Interv. 2015;8(1 Pt A):60–9.

    Article  PubMed  Google Scholar 

  28. Binder RK, Webb JG, Toggweiler S, Freeman M, Barbanti M, Willson AB, et al. Impact of post-implant SAPIEN XT geometry and position on conduction disturbances, hemodynamic performance, and paravalvular regurgitation. JACC Cardiovasc Interv. 2013;6(5):462–8.

    Article  PubMed  Google Scholar 

  29. Scheffel H, Leschka S, Plass A, Vachenauer R, Gaemperli O, Garzoli E, et al. Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol. 2007;100(4):701–6.

    Article  PubMed  Google Scholar 

  30. Feuchtner GM, Stolzmann P, Dichtl W, Schertler T, Bonatti J, Scheffel H, et al. Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings. J Am Coll Cardiol. 2009;53(5):436–44.

    Article  PubMed  Google Scholar 

  31. McElhinney DB, Hellenbrand WE, Zahn EM, Jones TK, Cheatham JP, Lock JE, et al. Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation. 2010;122(5):507–16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zahn EM, Hellenbrand WE, Lock JE, McElhinney DB. Implantation of the melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit early results from the u.s. Clinical trial. J Am Coll Cardiol. 2009;54(18):1722–9.

    Article  PubMed  Google Scholar 

  33. Armstrong AK, Balzer DT, Cabalka AK, Gray RG, Javois AJ, Moore JW, et al. One-year follow-up of the Melody transcatheter pulmonary valve multicenter post-approval study. JACC Cardiovasc Interv. 2014;7(11):1254–62.

    Article  PubMed  Google Scholar 

  34. Meadows JJ, Moore PM, Berman DP, Cheatham JP, Cheatham SL, Porras D, et al. Use and performance of the Melody Transcatheter Pulmonary Valve in native and postsurgical, nonconduit right ventricular outflow tracts. Circ Cardiovasc Interv. 2014;7(3):374–80.

    Article  PubMed  Google Scholar 

  35. Shinbane JS, Shriki J, Fleischman F, Hindoyan A, Withey J, Lee C, et al. Anomalous coronary arteries: cardiovascular computed tomographic angiography for surgical decisions and planning. World J Pediatr Congenital Heart Surg. 2013;4(2):142–54.

    Article  Google Scholar 

  36. Delgado V, Tops LF, Schuijf JD, de Roos A, Brugada J, Schalij MJ, et al. Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC Cardiovasc Imaging. 2009;2(5):556–65.

    Article  PubMed  Google Scholar 

  37. Shudo Y, Matsumiya G, Sakaguchi T, Miyagawa S, Yoshikawa Y, Yamauchi T, et al. Assessment of changes in mitral valve configuration with multidetector computed tomography: impact of papillary muscle imbrication and ring annuloplasty. Circulation. 2010;122(11 Suppl):S29–36.

    Article  PubMed  Google Scholar 

  38. Gordic S, Nguyen-Kim TD, Manka R, Sundermann S, Frauenfelder T, Maisano F, et al. Sizing the mitral annulus in healthy subjects and patients with mitral regurgitation: 2D versus 3D measurements from cardiac CT. Int J Cardiovasc Imaging. 2014;30(2):389–98.

    Article  PubMed  Google Scholar 

  39. Blanke P, Dvir D, Cheung A, Ye J, Levine RA, Precious B, et al. A simplified D-shaped model of the mitral annulus to facilitate CT-based sizing before transcatheter mitral valve implantation. J Cardiovasc Comput Tomogr. 2014;8(6):459–67.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moodley S, Schoenhagen P, Gillinov AM, Mihaljevic T, Flamm SD, Griffin BP, et al. Preoperative multidetector computed tomograpy angiography for planning of minimally invasive robotic mitral valve surgery: impact on decision making. J Thorac Cardiovasc Surg. 2013;146(2):262–8 e1.

    Article  PubMed  Google Scholar 

  41. Higgins J, Mayo J, Skarsgard P. Cardiac computed tomography facilitates operative planning in patients with mitral calcification. Ann Thorac Surg. 2013;95(1):e9–11.

    Article  PubMed  Google Scholar 

  42. Morris MF, Suri RM, Akhtar NJ, Young PM, Gruden JF, Burkhart HM, et al. Computed tomography as an alternative to catheter angiography prior to robotic mitral valve repair. Ann Thorac Surg. 2013;95(4):1354–9.

    Article  PubMed  Google Scholar 

  43. Ghersin N, Abadi S, Sabbag A, Lamash Y, Anderson RH, Wolfson H, et al. The three-dimensional geometric relationship between the mitral valvar annulus and the coronary arteries as seen from the perspective of the cardiac surgeon using cardiac computed tomography. Eur J CardioThorac Surg. 2013;44(6):1123–30.

    Article  PubMed  Google Scholar 

  44. Mao S, Shinbane JS, Girsky MJ, Child J, Carson S, Oudiz RJ, et al. Coronary venous imaging with electron beam computed tomographic angiography: three-dimensional mapping and relationship with coronary arteries. Am Heart J. 2005;150(2):315–22.

    Article  PubMed  Google Scholar 

  45. Choure AJ, Garcia MJ, Hesse B, Sevensma M, Maly G, Greenberg NL, et al. In vivo analysis of the anatomical relationship of coronary sinus to mitral annulus and left circumflex coronary artery using cardiac multidetector computed tomography: implications for percutaneous coronary sinus mitral annuloplasty. J Am Coll Cardiol. 2006;48(10):1938–45.

    Article  PubMed  Google Scholar 

  46. Feldman T, Kar S, Rinaldi M, Fail P, Hermiller J, Smalling R, et al. Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort. J Am Coll Cardiol. 2009;54(8):686–94.

    Article  PubMed  Google Scholar 

  47. Feldman T, Young A. Percutaneous approaches to valve repair for mitral regurgitation. J Am Coll Cardiol. 2014;63(20):2057–68.

    Article  PubMed  Google Scholar 

  48. Attizzani GF, Ohno Y, Capodanno D, Cannata S, Dipasqua F, Imme S, et al. Extended use of percutaneous edge-to-edge mitral valve repair beyond EVEREST (Endovascular Valve Edge-to-Edge Repair) criteria: 30-day and 12-month clinical and echocardiographic outcomes from the GRASP (Getting Reduction of Mitral Insufficiency by Percutaneous Clip Implantation) registry. JACC Cardiovasc Interv. 2015;8(1 Pt A):74–82.

    Article  PubMed  Google Scholar 

  49. Cook SC, Dyke 2nd PC, Raman SV. Management of adults with congenital heart disease with cardiovascular computed tomography. J Cardiovasc Comput Tomogr. 2008;2(1):12–22.

    Article  PubMed  Google Scholar 

  50. Shinbane JS, Colletti PM, Shellock FG. MR imaging in patients with pacemakers and other devices: engineering the future. JACC Cardiovasc Imaging. 2012;5(3):332–3.

    Article  PubMed  Google Scholar 

  51. Shinbane JS, Colletti PM, Shellock FG. Magnetic resonance imaging in patients with cardiac pacemakers: era of “MR Conditional” designs. J Cardiovasc Magn Reson. 2011;13:63.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hoffmann A, Engelfriet P, Mulder B. Radiation exposure during follow-up of adults with congenital heart disease. Int J Cardiol. 2007;118(2):151–3.

    Article  PubMed  Google Scholar 

  53. Ben Saad M, Rohnean A, Sigal-Cinqualbre A, Adler G, Paul JF. Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol. 2009;39(7):668–76.

    Article  PubMed  Google Scholar 

  54. Huang MP, Liang CH, Zhao ZJ, Liu H, Li JL, Zhang JE, et al. Evaluation of image quality and radiation dose at prospective ECG-triggered axial 256-slice multi-detector CT in infants with congenital heart disease. Pediatr Radiol. 2011;41(7):858–66.

    Article  PubMed  Google Scholar 

  55. Paul JF, Rohnean A, Elfassy E, Sigal-Cinqualbre A. Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol. 2011;41(2):244–9.

    Article  PubMed  Google Scholar 

  56. Shinbane JS, Shriki J, Hindoyan A, Ghosh B, Chang P, Farvid A, et al. Unoperated congenitally corrected transposition of the great arteries, nonrestrictive ventricular septal defect, and pulmonary stenosis in middle adulthood: do multiple wrongs make a right? World J Pediatr Congenital Heart Surg. 2012;3(1):123–9.

    Article  Google Scholar 

  57. Ihlenburg S, Rompel O, Rueffer A, Purbojo A, Cesnjevar R, Dittrich S, et al. Dual source computed tomography in patients with congenital heart disease. Thorac Cardiovasc Surg. 2014;62(3):203–10.

    PubMed  Google Scholar 

  58. Vastel-Amzallag C, Le Bret E, Paul JF, Lambert V, Rohnean A, El Fassy E, et al. Diagnostic accuracy of dual-source multislice computed tomographic analysis for the preoperative detection of coronary artery anomalies in 100 patients with tetralogy of Fallot. J Thorac Cardiovasc Surg. 2011;142(1):120–6.

    Article  PubMed  Google Scholar 

  59. Yamasaki Y, Nagao M, Yamamura K, Yonezawa M, Matsuo Y, Kawanami S, et al. Quantitative assessment of right ventricular function and pulmonary regurgitation in surgically repaired tetralogy of Fallot using 256-slice CT: comparison with 3-Tesla MRI. Eur Radiol. 2014;24(12):3289–99.

    Article  PubMed  Google Scholar 

  60. Park EA, Lee W, Chung SY, Yin YH, Chung JW, Park JH. Optimal scan timing and intravenous route for contrast-enhanced computed tomography in patients after Fontan operation. J Comput Assist Tomogr. 2010;34(1):75–81.

    Article  PubMed  Google Scholar 

  61. Cook SC, McCarthy M, Daniels CJ, Cheatham JP, Raman SV. Usefulness of multislice computed tomography angiography to evaluate intravascular stents and transcatheter occlusion devices in patients with d-transposition of the great arteries after mustard repair. Am J Cardiol. 2004;94(7):967–9.

    Article  PubMed  Google Scholar 

  62. Oztunc F, Baris S, Adaletli I, Onol NO, Olgun DC, Guzeltas A, et al. Coronary events and anatomy after arterial switch operation for transposition of the great arteries: detection by 16-row multislice computed tomography angiography in pediatric patients. Cardiovasc Intervent Radiol. 2009;32(2):206–12.

    Article  PubMed  Google Scholar 

  63. Ou P, Celermajer DS, Marini D, Agnoletti G, Vouhe P, Brunelle F, et al. Safety and accuracy of 64-slice computed tomography coronary angiography in children after the arterial switch operation for transposition of the great arteries. JACC Cardiovasc Imaging. 2008;1(3):331–9.

    Article  PubMed  Google Scholar 

  64. Raman SV, Cook SC, McCarthy B, Ferketich AK. Usefulness of multidetector row computed tomography to quantify right ventricular size and function in adults with either tetralogy of Fallot or transposition of the great arteries. Am J Cardiol. 2005;95(5):683–6.

    Article  PubMed  Google Scholar 

  65. Quaife RA, Chen MY, Kim M, Klein AJ, Jehle A, Kay J, et al. Pre-procedural planning for percutaneous atrial septal defect closure: transesophageal echocardiography compared with cardiac computed tomographic angiography. J Cardiovasc Comput Tomogr. 2010;4(5):330–8.

    Article  PubMed  Google Scholar 

  66. Kivisto S, Hanninen H, Holmstrom M. Partial anomalous pulmonary venous return and atrial septal defect in adult patients detected with 128-slice multidetector computed tomography. J Cardiothorac Surg. 2011;6:126.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rajiah P, Kanne JP. Computed tomography of septal defects. J Cardiovasc Comput Tomogr. 2010;4(4):231–45.

    Article  PubMed  Google Scholar 

  68. Amat F, Le Bret E, Sigal-Cinqualbre A, Coblence M, Lambert V, Rohnean A, et al. Diagnostic accuracy of multidetector spiral computed tomography for preoperative assessment of sinus venosus atrial septal defects in children. Interact Cardiovasc Thorac Surg. 2011;12(2):179–82.

    Article  PubMed  Google Scholar 

  69. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation. 2008;118(23):e714–833.

    Article  PubMed  Google Scholar 

  70. Garcia-Montes JA, Camacho-Castro A, Sandoval-Jones JP, Buendia-Hernandez A, Calderon-Colmenero J, Patino-Bahena E, et al. Closure of large patent ductus arteriosus using the Amplatzer Septal Occluder. Cardiol Young. 2015;25(3):491–5.

    Article  PubMed  Google Scholar 

  71. Shriki JE, Shinbane JS, Rashid MA, Hindoyan A, Withey JG, DeFrance A, et al. Identifying, characterizing, and classifying congenital anomalies of the coronary arteries. Radiographics. 2012;32(2):453–68.

    Article  PubMed  Google Scholar 

  72. Mainwaring RD, Reddy VM, Reinhartz O, Petrossian E, MacDonald M, Nasirov T, et al. Anomalous aortic origin of a coronary artery: medium-term results after surgical repair in 50 patients. Ann Thorac Surg. 2011;92(2):691–7.

    Article  PubMed  Google Scholar 

  73. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.

    Article  CAS  PubMed  Google Scholar 

  74. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105(2):162–7.

    Article  PubMed  Google Scholar 

  75. Kuhl HP, Beek AM, van der Weerdt AP, Hofman MB, Visser CA, Lammertsma AA, et al. Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2003;41(8):1341–8.

    Article  PubMed  Google Scholar 

  76. Selvanayagam JB, Kardos A, Francis JM, Wiesmann F, Petersen SE, Taggart DP, et al. Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation. 2004;110(12):1535–41.

    Article  PubMed  Google Scholar 

  77. Lardo AC, Cordeiro MA, Silva C, Amado LC, George RT, Saliaris AP, et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation. 2006;113(3):394–404.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chiou KR, Liu CP, Peng NJ, Huang WC, Hsiao SH, Huang YL, et al. Identification and viability assessment of infarcted myocardium with late enhancement multidetector computed tomography: comparison with thallium single photon emission computed tomography and echocardiography. Am Heart J. 2008;155(4):738–45.

    Article  PubMed  Google Scholar 

  79. Mahnken AH, Koos R, Katoh M, Wildberger JE, Spuentrup E, Buecker A, et al. Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol. 2005;45(12):2042–7.

    Article  PubMed  Google Scholar 

  80. Sato A, Hiroe M, Nozato T, Hikita H, Ito Y, Ohigashi H, et al. Early validation study of 64-slice multidetector computed tomography for the assessment of myocardial viability and the prediction of left ventricular remodelling after acute myocardial infarction. Eur Heart J. 2008;29(4):490–8.

    Article  PubMed  Google Scholar 

  81. Habis M, Capderou A, Ghostine S, Daoud B, Caussin C, Riou JY, et al. Acute myocardial infarction early viability assessment by 64-slice computed tomography immediately after coronary angiography: comparison with low-dose dobutamine echocardiography. J Am Coll Cardiol. 2007;49(11):1178–85.

    Article  PubMed  Google Scholar 

  82. Habis M, Capderou A, Sigal-Cinqualbre A, Ghostine S, Rahal S, Riou JY, et al. Comparison of delayed enhancement patterns on multislice computed tomography immediately after coronary angiography and cardiac magnetic resonance imaging in acute myocardial infarction. Heart. 2009;95(8):624–9.

    Article  CAS  PubMed  Google Scholar 

  83. Sato A, Nozato T, Hikita H, Akiyama D, Nishina H, Hoshi T, et al. Prognostic value of myocardial contrast delayed enhancement with 64-slice multidetector computed tomography after acute myocardial infarction. J Am Coll Cardiol. 2012;59(8):730–8.

    Article  PubMed  Google Scholar 

  84. Rodriguez-Granillo GA, Rosales MA, Baum S, Rennes P, Rodriguez-Pagani C, Curotto V, et al. Early assessment of myocardial viability by the use of delayed enhancement computed tomography after primary percutaneous coronary intervention. JACC Cardiovasc Imaging. 2009;2(9):1072–81.

    Article  PubMed  Google Scholar 

  85. Raman SV, Sahu A, Merchant AZ, Louis LB, Firstenberg MS, Sun B. Noninvasive assessment of left ventricular assist devices with cardiovascular computed tomography and impact on management. J Heart Lung Transpl. 2010;29(1):79–85.

    Article  Google Scholar 

  86. Boruah PK, Baruah D, Mahr C, Gaglianello N, Shahir K. Intermittent left ventricular assist device inflow tract obstruction by prolapsing papillary muscle detected by multi-detector computed tomography (MDCT). Int J Cardiol. 2014;176(1):e13–4.

    Article  PubMed  Google Scholar 

  87. Bolen MA, Popovic ZB, Gonzalez-Stawinski G, Schoenhagen P. Left ventricular assist device malposition interrogated by 4-D cine computed tomography. J Cardiovasc Comput Tomogr. 2011;5(3):186–8.

    Article  PubMed  Google Scholar 

  88. Sorensen EN, Hiivala NJ, Jeudy J, Rajagopal K, Griffith BP. Computed tomography correlates of inflow cannula malposition in a continuous-flow ventricular-assist device. J Heart Lung Transpl. 2013;32(6):654–7.

    Article  Google Scholar 

  89. Mishkin JD, Enriquez JR, Meyer DM, Bethea BT, Thibodeau JT, Patel PC, et al. Utilization of cardiac computed tomography angiography for the diagnosis of left ventricular assist device thrombosis. Circ Heart Fail. 2012;5(2):e27–9.

    Article  PubMed  Google Scholar 

  90. von Ziegler F, Leber AW, Becker A, Kaczmarek I, Schonermarck U, Raps C, et al. Detection of significant coronary artery stenosis with 64-slice computed tomography in heart transplant recipients: a comparative study with conventional coronary angiography. Int J Cardiovasc Imaging. 2009;25(1):91–100.

    Article  Google Scholar 

  91. von Ziegler F, Rummler J, Kaczmarek I, Greif M, Schenzle J, Helbig S, et al. Detection of significant coronary artery stenosis with cardiac dual-source computed tomography angiography in heart transplant recipients. Transplant Int. 2012;25(10):1065–71.

    Article  Google Scholar 

  92. Barthelemy O, Toledano D, Varnous S, Fernandez F, Boutekadjirt R, Ricci F, et al. Multislice computed tomography to rule out coronary allograft vasculopathy in heart transplant patients. J Heart Lung Transpl. 2012;31(12):1262–8.

    Article  Google Scholar 

  93. Wever-Pinzon O, Romero J, Kelesidis I, Wever-Pinzon J, Manrique C, Budge D, et al. Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: a meta-analysis of prospective trials. J Am Coll Cardiol. 2014;63(19):1992–2004.

    Article  PubMed  Google Scholar 

  94. Rohnean A, Houyel L, Sigal-Cinqualbre A, To NT, Elfassy E, Paul JF. Heart transplant patient outcomes: 5-year mean follow-up by coronary computed tomography angiography. Transplantation. 2011;91(5):583–8.

    Article  PubMed  Google Scholar 

  95. Kobashigawa J. Coronary computed tomography angiography: is it time to replace the conventional coronary angiogram in heart transplant patients? J Am Coll Cardiol. 2014;63(19):2005–6.

    Article  PubMed  Google Scholar 

  96. Hoey ET, Mankad K, Puppala S, Gopalan D, Sivananthan MU. MRI and CT appearances of cardiac tumours in adults. Clin Radiol. 2009;64(12):1214–30.

    Article  CAS  PubMed  Google Scholar 

  97. Rajiah P, Kanne JP, Kalahasti V, Schoenhagen P. Computed tomography of cardiac and pericardiac masses. J Cardiovasc Comput Tomogr. 2011;5(1):16–29.

    Article  PubMed  Google Scholar 

  98. Suh SY, Rha SW, Kim JW, Park CG, Seo HS, Oh DJ, et al. The usefulness of three-dimensional multidetector computed tomography to delineate pericardial calcification in constrictive pericarditis. Int J Cardiol. 2006;113(3):414–6.

    Article  PubMed  Google Scholar 

  99. von Erffa J, Daniel WG, Achenbach S. Three-dimensional visualization of severe pericardial calcification in constrictive pericarditis using multidetector-row computed tomography. Eur Heart J. 2006;27(3):275.

    Article  Google Scholar 

  100. Kameda Y, Funabashi N, Kawakubo M, Uehara M, Hasegawa H, Kobayashi Y, et al. Heart in an eggshell – eggshell appearance calcified constrictive pericarditis demonstrated by three-dimensional images of multislice computed tomography. Int J Cardiol. 2007;120(2):269–72.

    Article  PubMed  Google Scholar 

  101. Rifkin RD, Mernoff DB. Noninvasive evaluation of pericardial effusion composition by computed tomography. Am Heart J. 2005;149(6):1120–7.

    Article  PubMed  Google Scholar 

  102. Hayter RG, Rhea JT, Small A, Tafazoli FS, Novelline RA. Suspected aortic dissection and other aortic disorders: multi-detector row CT in 373 cases in the emergency setting. Radiology. 2006;238(3):841–52.

    Article  PubMed  Google Scholar 

  103. Yoshida S, Akiba H, Tamakawa M, Yama N, Hareyama M, Morishita K, et al. Thoracic involvement of type A aortic dissection and intramural hematoma: diagnostic accuracy – comparison of emergency helical CT and surgical findings. Radiology. 2003;228(2):430–5.

    Article  PubMed  Google Scholar 

  104. Yoshikai M, Ikeda K, Itoh M, Noguchi R. Detection of coronary artery disease in acute aortic dissection: the efficacy of 64-row multidetector computed tomography. J Card Surg. 2008;23(3):277–9.

    Article  PubMed  Google Scholar 

  105. Smayra T, Noun R, Tohme-Noun C. Left anterior descending coronary artery dissection after blunt chest trauma: assessment by multi-detector row computed tomography. J Thorac Cardiovasc Surg. 2007;133(3):811–2.

    Article  PubMed  Google Scholar 

  106. Sato Y, Matsumoto N, Komatsu S, Matsuo S, Kunimasa T, Yoda S, et al. Coronary artery dissection after blunt chest trauma: depiction at multidetector-row computed tomography. Int J Cardiol. 2007;118(1):108–10.

    Article  PubMed  Google Scholar 

  107. Scaglione M, Pinto A, Pinto F, Romano L, Ragozzino A, Grassi R. Role of contrast-enhanced helical CT in the evaluation of acute thoracic aortic injuries after blunt chest trauma. Eur Radiol. 2001;11(12):2444–8.

    Article  CAS  PubMed  Google Scholar 

  108. Higashiura W, Sakaguchi S, Tabayashi N, Taniguchi S, Kichikawa K. Impact of 3-dimensional-computed tomography workstation for precise planning of endovascular aneurysm repair. Circulation J. 2008;72(12):2028–34.

    Article  Google Scholar 

  109. Lin MP, Chang SC, Wu RH, Chou CK, Tzeng WS. A comparison of computed tomography, magnetic resonance imaging, and digital subtraction angiography findings in the diagnosis of infected aortic aneurysm. J Comput Assist Tomogr. 2008;32(4):616–20.

    Article  PubMed  Google Scholar 

  110. Sodian R, Schmauss D, Markert M, Weber S, Nikolaou K, Haeberle S, et al. Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann Thorac Surg. 2008;85(6):2105–8.

    Article  PubMed  Google Scholar 

  111. Schmauss D, Schmitz C, Bigdeli AK, Weber S, Gerber N, Beiras-Fernandez A, et al. Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg. 2012;93(2):e31–3.

    Article  PubMed  Google Scholar 

  112. Schmauss D, Gerber N, Sodian R. Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg. 2013;145(5):1407–8.

    Article  PubMed  Google Scholar 

  113. Schmauss D, Juchem G, Weber S, Gerber N, Hagl C, Sodian R. Three-dimensional printing for perioperative planning of complex aortic arch surgery. Ann Thorac Surg. 2014;97(6):2160–3.

    Article  PubMed  Google Scholar 

  114. Ma XJ, Tao L, Chen X, Li W, Peng ZY, Chen Y, et al. Clinical application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of Fallot. Genet Molecul Res. 2015;14(1):1301–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerold S. Shinbane MD, FACC, FHRS, FSCCT .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Video 22.1

3-D Relationships between Thoracic Structures (42.9 MB)

Video 22.2

Ao Valve Endocarditis Pseudoaneurysm (24.3 MB)

Video 22.3

Apical VSD (4.04 MB)

Video 22.4

Post MI Anteroseptal VSD (42.4 MB)

Video 22.5

D TGA PDA Hx Atrial Baffle (39.3 MB)

Video 22.6

Operated D TGA with Atrial Baffle (95.1 MB)

Video 22.7

Lecompte RVOT Conduit Stenosis Anomalous Coronary Arteries (26.9 MB)

Video 22.8

RVOT Conduit Stenosis Anomalous Coronary Arteries (7.92 MB)

Video 22.9

RCA to Coronary Sinus Fistula (5.94 MB)

Video 22.10

Takeuchi Repair (16.7 MB)

Video 22.11

Pre VAD Planning (36.0 MB)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Shinbane, J.S., Baker, C.J., Cunningham, M.J., Starnes, V.A. (2016). Cardiothoracic Surgery Applications: Virtual CT Imaging Approaches to Procedural Planning. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-28219-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28219-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28217-6

  • Online ISBN: 978-3-319-28219-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics