Skip to main content

Soil Neighbors I: Traces of Other Organisms in Paleosols. Crustaceans and Earthworms

  • Chapter
  • First Online:
Ichnoentomology

Part of the book series: Topics in Geobiology ((TGBI,volume 37))

  • 1097 Accesses

Abstract

The aim of including trace fossils of other organisms in paleosols in this and the next chapter is to provide necessary information to identify insect trace fossils. First step for the identification is to check the similarity of the trace fossil with an extant insect trace, and the second to discard that it is not also similar to that of other organism. This chapter deals with extant and fossil traces of crustaceans and earthworms in soils and paleosols. The different types of extant crayfish burrows and their relationships with the water table are reviewed. Marine crabs belonging to Gecarcinidae, Coenobitidae, Grapsidae, Varunidae, Ocypodidae, among other families, show different degrees of terrestrial adaptations and can burrow in soils near the beach. Freshwater crabs belonging to Trichodactylidae may also burrow in soils. The surface morphology of these burrows is described. Crayfish fossil burrows are included in Camborygma, Loloichnus and Lunilichnus, whereas some ichnospecies of Cellicalichnus and Dagnichnus may represent recruitment structures or nests. The evolutionary significance and possible interpretations of these nests is discussed. Burrows of epigeic, endogeic, and anecic earthworms are described, along with aestivation chambers. The trace fossil record of earthworms including Edaphichnium lumbricatum, burrows filled with pellets, Castrichnus incolumis, aestivation chambers connected to meniscate burrows, and diffuse boxworks is reviewed. Earthworm trace fossils and false termite nests. Blueprint-style plates concentrate significant traces produced by crustaceans and earthworms. Color plates of extant producers and their traces, type material, morphological details and representative cases of trace fossils are provided.

With Darwin, earthworms turn intelligent and become human friends

(Brown et al. 2003)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Urreta MB (1992) Tertiary freshwater decapod (Crustacea: Parastacidae) from the Ñirihuau Basin, Patagonia, Argentina. J Paleontol 66:817–825

    Article  Google Scholar 

  • Alcorlo P, Geiger W, Otero M (2004) Feeding preferences and food selection of the red swamp crayfish, Procambarus clarkii, in habitats differing in food item diversity. Crustaceana 77:435–453

    Article  Google Scholar 

  • Astre G (1937) Un annélide sabellien dans le Garumnien de Saldès. Bull Soc Hist Nat Toulouse 71:192–194

    Google Scholar 

  • Bastardie F, Capowiez Y, de Dreuzy JR, Cluzeau D (2003) X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores. Appl Soil Ecol 24:3–16

    Article  Google Scholar 

  • Bastardie F, Capowiez Y, Cluzeau D (2005) 3D characterisation of earthworm burrow systems in natural soil cores collected from a 12-year-old pasture. Appl Soil Ecol 30:34–46

    Article  Google Scholar 

  • Bedatou E, Melchor RN, Bellosi ES, Genise JF (2005) Icnofábricas continentales complejas de Patagonia Central. In: Resúmenes de la reunión anual de comunicaciones de la asociación paleontológica argentina, Puerto Madryn, p 32

    Google Scholar 

  • Bedatou E, Melchor RN, Bellosi ES, Genise JF (2006) Trazas fósiles de decápodos continentales en el Jurásico y Cretácico de Santa Cruz, Argentina. In: IV Congreso latinoamericano de sedimentología y IX reunión argentina de sedimentología, San Carlos de Bariloche, p 54

    Google Scholar 

  • Bedatou E, Melchor RN, Bellosi E, Genise JF (2008) Crayfish burrows from Late Jurassic-Late Cretaceous continental deposits of Patagonia: Argentina. Their palaeoecological, palaeoclimatic and palaeobiogeographical significance. Palaeogeogr Palaeoclimatol Palaeoecol 257:169–184

    Article  Google Scholar 

  • Bedatou E, Melchor RN, Genise JF (2009) Complex palaeosol ichnofabrics from Late Jurassic-Early Cretaceous volcaniclastic successions of Central Patagonia, Argentina. Sediment Geol 218:74–102

    Article  Google Scholar 

  • Bedatou E, Rudolph E, Genise JF, González MG, Melchor RN (2010) Architecture of burrows of extant land crayfishes from South-Central Chile. In: Abstract book of the workshop of crustacean bioturbation—fossil and recent, Lepe, España, pp 7–10

    Google Scholar 

  • Beilinson E, Taglioretti ML (2013) Análisis icnológico y paleoambiental de la Aloformación Punta San Andrés (Plio—Pleistoceno), provincia de Buenos Aires, Argentina. Ameghiniana 50:153–165

    Article  Google Scholar 

  • Beilinson E, Veiga GD, Spalletti LA (2013) High-resolution sequence stratigraphy and continental environmental evolution: an example from east-central Argentina. Sediment Geol 296:21–35

    Article  Google Scholar 

  • Bertness MD, Miller T (1984) The distribution and dynamics of Uca pugnax (Smith) burrows in a New England salt marsh. J Exp Mar Biol Ecol 83:211–237

    Article  Google Scholar 

  • Bottjer D (1985) Trace fossils and paleoenvironments of two Arkansas Upper Cretaceous discontinuity surfaces. J Paleontol 59:282–298

    Google Scholar 

  • Bouché MB (1972) Lumbriciens de France. Écologie et Systématique. Institut Nacional de la Recherche Agronomique (INRA), Paris

    Google Scholar 

  • Bouché MB (1975) Action de la faune sur les états de la matière organique dans les ècosystemes. In: Kilbertus G, Reisinger O, Mourey A, Consela da Fonseca JA (eds) Biodégradation et Humification. Pierron, Sarregemines, pp 157–168

    Google Scholar 

  • Bouché MB (1984) Les vers de terre. La Recherche 156:796–804

    Google Scholar 

  • Bown TM, Kraus MJ (1983) Ichnofossils of the alluvial Willwood Formation (Lower Eocene), Bighorn Basin, Northwestern Wyoming, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 43:95–128

    Article  Google Scholar 

  • Bown TM, Laza JH (1990) A Miocene fossil termite nest from southern Argentina and its paleoclimatological implications. Ichnos 1:73–79

    Article  Google Scholar 

  • Brown GG, Fragoso C (2007) Minhocas na América Latina: Biodiversidade e Ecologia. Embrapa Soja, Londrinal

    Google Scholar 

  • Brown GG, James SW (2007) Ecologia, biodiversidade e biogeografia das minhocas no Brasil. In: Brown GG, Fragoso C (eds) Minhocas na América Latina: Biodiversidade e Ecologia. Londina, Embrapa Soja, pp 297–382

    Google Scholar 

  • Brown GG, Feller C, Blanchart E, Deleporte E, Chernyanskii SS (2003) With Darwin, earthworms turn intelligent and become human friends. Pedobiologia 47:924–933

    Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology. Organism-substrate interactions in space and time. Cambridge University Press, New York

    Book  Google Scholar 

  • Bullock P, Fedoroff N, Jongerius A, Tursina T, Babel U (1985) Handbook of soil thin section description. Waine Research, Albrighton

    Google Scholar 

  • Capowiez Y (2000) Differences in burrowing behaviour and spatial interaction between the two earthworm species Aporrectodea nocturna and Allolobophora chlorotica. Biol Fertil Soils 30:341–346

    Article  Google Scholar 

  • Capowiez Y, Belzunces L (2001) Dynamic study of the burrowing behaviour of Aporrectodea nocturna and Allolobophora chlorotica: interactions between earthworms and spatial avoidance of burrows. Biol Fertil Soils 33:310–316

    Article  Google Scholar 

  • Capowiez Y, Pierret A, Daniel O, Monestiez P, Kretzschmar A (1998) 3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores. Biol Fertil Soils 27:51–59

    Article  Google Scholar 

  • Capowiez Y, Monestiez P, Belzunces L (2001) Burrow systems made by Aporrectodea nocturna and Allolobophora chlorotica in artificial cores: morphological differences and effects of interespecific interactions. Appl Soil Ecol 16:109–120

    Article  Google Scholar 

  • Capowiez Y, Pierret A, Moran CJ (2003) Characterisation of the three-dimensional structure of earthworm burrows systems using image analysis and mathematical morphology. Biol Fertil Soils 38:301–310

    Article  Google Scholar 

  • Chin K, Pearson D, Ekdale AA (2013) Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the end-Cretaceous mass extinction. PLoS One 8:e70920

    Article  CAS  Google Scholar 

  • Cosarinsky MI, Bellosi ES, Genise JF (2005) Micromorphology of modern epigean termite nests and possible termite ichnofossils: a comparative analysis (Isoptera). Sociobiology 45:745–778

    Google Scholar 

  • Crandall KA, Harris DJ, Fetzner JW (2000) The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences. Proc R Soc Lond B 2000:1679–1686

    Article  Google Scholar 

  • Curran HA (1976) A trace fossil brood structure of probable callianassid origin. J Paleontol 50:249–259

    Google Scholar 

  • Curran HA, Martin AJ (2003) Complex decapod burrows and ecological relationships in modern and Pleistocene intertidal carbonate environments, San Salvador Island, Bahamas. Palaeogeogr Palaeoclimatol Palaeoecol 192:229–245

    Article  Google Scholar 

  • Curran HA, White A (1999) Ichnology of Holocene carbonate eolianites on San Salvador Island, Bahamas: diversity and significance. In: Curran HA, Mylroie JE (eds) Proceedings of the 9th symposium of geology of Bahamas and other carbonate regions. Bahamian Field Station, San Salvador, pp 22–35

    Google Scholar 

  • D’Alessandro A, Bromley R (1995) A new ichnospecies of Spongeliomorpha from the Pleistocene of Sicily. J Paleontol 69:393–398

    Article  Google Scholar 

  • Darwin C (1838) On the formation of mould. Proc Geol Soc Lond 2:574–576

    Google Scholar 

  • Darwin C (1881) The formation of vegetable mould through the action of worms with some observations on their habits. John Murray, London

    Book  Google Scholar 

  • Dexter AR (1978) Tunnelling in soil by earthworms. Soil Biol Biochem 10:447–449

    Article  Google Scholar 

  • Duncan GA (1986) Burrows of Ocypode quadrata (Fabricius) as related to slopes of substrate surfaces. J Paleontol 60:384–389

    Article  Google Scholar 

  • Dworschak PC, Koller H, Abed-Navandi D (2006) Burrow structure, burrowing and feeding behaviour of Corallianassa longiventris and Pestarella tyrrhena (Crustacea, Thalassinidea, Callianassidae). Mar Biol Berl 148:1369–1382

    Article  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman & Hall, London

    Google Scholar 

  • Ehlers W (1975) Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Sci 119:242–249

    Article  Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton G (1984) Ichnology. The use of trace fossils in sedimentology and stratigraphy. SEPM Short Course 15:1–315

    Google Scholar 

  • de Gibert JM, Ekdale AA (2010) Paleobiology of the crustacean trace fossil Spongeliomorpha iberica in the Miocene of southeastern Spain. Acta Palaeontol Pol 55:733–740

    Article  Google Scholar 

  • de Gibert JM, Jeong K, Martinell J (1999) Ethologic and ontogenic significance of the trace fossil Sinusichnus sinuosus, Pliocene, northwestern Mediterranean. Lethaia 32:31–40

    Article  Google Scholar 

  • de Gibert JM, Netto RG, Tognoli FMW, Grangeiro ME (2006) Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 230:70–84

    Article  Google Scholar 

  • de Gibert JM, Mas G, Ekdale AA (2012) Architectural complexity of marine crustacean burrows: unusual helical trace fossils from the Miocene of Mallorca, Spain. Lethaia 45:574–585

    Article  Google Scholar 

  • Feldmann RM, Pole M (1994) A new species of Paranephrops White, 1842: a fossil crayfish (Decapoda: Parastacidae) from the Manuherikia Group (Miocene), Central Otago, New Zealand. N Zeal J Geol Geophys 37:163–167

    Article  Google Scholar 

  • Fitzpatrick EA (1984) Micromorphology of soils. Chapman and Hall, London

    Book  Google Scholar 

  • Fitzsimons JA, Antos MJ (2011) Ecological notes on the East Gippsland burrowing crayfish Engaeus orientalis, including burrow structure and associated fauna. Aust Zool 35:853–857

    Article  Google Scholar 

  • Forbes AT (1973) An unusual abbreviated larval life in the estuarine burrowing prawn Callianassa kraussi (Crustacea: Decapoda: Thalassinidea). Mar Biol 22:361–365

    Article  Google Scholar 

  • Frank JH, Ahn K-J (2011) Coastal Staphylinidae (Coleoptera): a worldwide checklist, biogeography and natural history. ZooKeys 107:1–98

    Article  Google Scholar 

  • Frey RW, Howard JD (1975) Endobenthic adaptations of juvenile thalassinidean shrimp. Bull Geol Soc Denmark 24:283–297

    Google Scholar 

  • Frey RW, Howard JD, Pryor WA (1978) Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 14:199–229

    Article  Google Scholar 

  • Frey RW, Curran HA, Pemberton SG (1984a) Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:333–350

    Google Scholar 

  • Frey RW, Pemberton SG, Fagerstrom JA (1984b) Morphological, ethological and environmental significance of the ichnogenera Scoyenia and Ancorichnus. J Paleontol 58:511–528

    Google Scholar 

  • Fürsich FT (1981) Invertebrate trace fossils from the Upper Jurassic of Portugal. Com Serv Geol Portugal 67:153–168

    Google Scholar 

  • Fürsich FT, Wilmsen M, Taheri J (2010) Cellicalichnus antiquus isp. nov., an Early Middle Jurassic arthropod brood structure from the Shemshak Group of north-eastern Iran. Neues Jahr Geol Palaeontol Abh 256:61–68

    Article  Google Scholar 

  • Garassino A (1997) The macuran decapod crustaceans of the Lower Cretaceous (Lower Barremian) of Las Hoyas (Cuenca, Spain). Atti Soc Ital Sci Nat Mus Civ Stor Nat Mil 137:101–126

    Google Scholar 

  • Genise JF (2004a) Fungus traces in wood: a rare bioerosional item. In: Abstract book of the first international congress on ichnology, Trelew, Argentina, p 37

    Google Scholar 

  • Genise JF, Bellosi ES (2004) Continental trace fossils of the Laguna Palacios Formation (Upper Cretaceous) from the San Bernardo Range (Chubut Province). In: Bellosi ES, Melchor RN (eds) Fieldtrip Guidebook. First international congress on ichnology, Trelew, Argentina, pp 33–43

    Google Scholar 

  • Genise JF, Melchor RN, Bellosi ES, González MG, Krause JM (2007) New insect pupation chambers (Pupichnia) from the Upper Cretaceous of Patagonia, Argentina. Cretac Res 28:545–559

    Article  Google Scholar 

  • Genise JF, Bedatou E, Melchor RN (2008a) Terrestrial crustacean breeding trace fossils from the Cretaceous of Patagonia (Argentina): palaeobiological and evolutionary significance. Palaeogeogr Palaeoclimatol Palaeoecol 264:128–139

    Article  Google Scholar 

  • Genise JF, Alonso-Zarza AM, Krause JM, Sánchez MV, Sarzetti LC, Farina JL, González MG, Cosarinsky M, Bellosi ES (2010a) Rhizolith balls from the Lower Cretaceous of Patagonia: just roots or the oldest evidence of insect agriculture? Palaeogeogr Palaeoclimatol Palaeoecol 287:128–142

    Article  Google Scholar 

  • Genise JF, Melchor RN, Bellosi ES, Verde M (2010) Invertebrate and vertebrate trace fossils in carbonates. In: Alonso-Zarza AM, Tanner L (eds) Carbonates in continental settings. developments in sedimentology, vol 61. Elsevier, Amsterdam, pp 319–369

    Google Scholar 

  • Genise JF, Cantil LF, Dinghi PA, Sánchez MV, Sarzetti L (2013b) The aestivation chamber of the giant earthworm Glossoscolex bergi (Glossoscolecidae) in the subtropical rainforest of Misiones (Argentina). Ichnos 20:116–119

    Article  Google Scholar 

  • Genise JF, Bedatou E, Bellosi ES, Sarzetti LC, Sánchez MV, Krause JM (2016) The Phanerozoic four revolutions and evolution of paleosol ichnofacies. In: Buatois LA, Mángano MG (eds) The trace fossil record of major evolutionary events. Topics in geobiology. Springer, New York

    Google Scholar 

  • Gibling MR, Nanson GC, Maroulis JC (1998) Anastomosing river sedimentation in the Channel Country of central Australia. Sedimentology 45:595–619

    Article  CAS  Google Scholar 

  • Green PT (2004) Burrow dynamics of the red land crab Gecarcoidea natalis (Brachyura, Gecarcinidae) in rain forests on Christmas Islands (Indian Ocean). J Crustac Biol 24:340–349

    Article  Google Scholar 

  • Grow L (1981) Burrowing behaviour in the crayfish Cambarus diogenes diogenes Girard. Anim Behav 29:351–356

    Article  Google Scholar 

  • Growns IO, Richardson AMM (1988) Diet and burrowing habitat of the freshwater crayfish, Parastacoides tasmanicus tasmanicus Clark (Decapoda: Parastacidae). Aust J Mar Freshwater Res 39:525–534

    Article  Google Scholar 

  • Harris TM (1961) The Yorkshire Jurassic Flora I. Thallophyta-Pteridophyta. British Museum Natural History, London

    Book  Google Scholar 

  • Harris TM, Rest JA (1966) The flora of the Brora Coal. Geol Mag 103:101–109

    Article  Google Scholar 

  • Hartnoll RG, Clark PF (2006) A mass recruitment event in the land crab Gecarcinus ruricola (Linnaeus, 1758) (Brachyura: Grapsoidea: Gecarcinidae), and a description of the megalop. Zool J Linnean Soc 146:149–164

    Article  Google Scholar 

  • Hasiotis ST (2004) Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sediment Geol 167:177–268

    Article  Google Scholar 

  • Hasiotis ST, Bown TM (1996) A short note about crayfish burrows from the Paleocene-Eocene Claron Formation, southwestern Utah, USA. Freshwater Crayfish 11:121–129

    Google Scholar 

  • Hasiotis ST, Dubiel RF (1993c) Crayfish burrows and their paleohydrologic significance—Upper Triassic Chinle Formation, Ft. Wingate, New Mexico. In: Lucas SG, Morales M (eds) The Nonmarine Triassic. New Mexico Mus Nat Hist Sci Bull 3:G24–G26

    Google Scholar 

  • Hasiotis ST, Honey JG (1995) Crayfish burrows and their paleohydrologic significance in Paleocene continental deposits, Washakie, great Divide, and Hanna Basins, Wyoming, USA. Freshwater Crayfish 10:105–117

    Google Scholar 

  • Hasiotis ST, Honey JG (2000) Paleohydrologic and stratigraphic significance of crayfish burrows in continental deposits: examples from several Paleocene Laramide Basins in the Rocky Mountains. J Sediment Res 70:127–139

    Article  CAS  Google Scholar 

  • Hasiotis ST, Mitchell CE (1993) A comparison of crayfish burrow morphologies: triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291–314

    Article  Google Scholar 

  • Hasiotis ST, Mitchell CE, Dubiel RF (1993b) Application of morphologic burrow interpretations to discern continental burrow architects: lungfish or crayfish? Ichnos 2:315–333

    Article  Google Scholar 

  • Hembree DI, Hasiotis ST (2007) Paleosols and ichnofossils of the White River Formation of Colorado: insight into soil ecosystems of the North American Midcontinent during the Eocene-Oligocene transition. Palaios 22:123–142

    Article  Google Scholar 

  • Hembree DI, Hasiotis ST (2008) Miocene vertebrate and invertebrate burrows defining compound paleosols in the Pawnee Creek Formation, Colorado, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 270:349–365

    Article  Google Scholar 

  • Hicks JW (1985) The breeding behaviour and migrations of the terrestrial crab Gecarcoidea natalis (Decapoda: Brachyura). Aust J Zool 33:127–142

    Article  Google Scholar 

  • Hinton HE (1981) Biology of insect eggs, vol I. Pergamon Press, Oxford

    Google Scholar 

  • Hobbs HH Jr (1981) The crayfishes of Georgia. Smithsonian Contrib Zool 318:1–519

    Article  Google Scholar 

  • Hobbs HH Jr (1988) Crayfishes distribution, adaptive radiation, and evolution. In: Holdich DM, Lowery RS (eds) Freshwater Crayfish: biology, management and exploitation. Timber Press, Portland, pp 52–81

    Google Scholar 

  • Hobbs Jr. HH (1942) The crayfishes of Florida. Univ Fl Publ Biol Sci Ser 3:1–179

    Google Scholar 

  • Hogue CL, Bright DB (1971) Observations on the biology of land crabs and their burrow associates on the Kenya coast. Contrib Sci Los Angeles County Mus 210:1–10

    Google Scholar 

  • Horwitz PHJ, Knott B (1983) The burrowing habitat of the koonac Cherax plebejus (Decapoda: Parastacidae). Western Aust Nat 15:113–117

    Google Scholar 

  • Horwitz PHJ, Richardson AMM (1986) An ecological classification of the burrows of Australian freshwater crayfish. Aust J Mar Freshwater Res 37:237–242

    Article  Google Scholar 

  • Horwitz PHJ, Richardson AMM, Boulton A (1985a) The burrow habitat of two sympatric species of land crayfish Engaeus urostrictus and E. tuberculatus (Decapoda: Parastacidae). Victorian Nat 102:188–197

    Google Scholar 

  • Horwitz PHJ, Richardson AMM, Cramp PM (1985b) Aspects of the life history of the burrowing freshwater crayfish Engaeus leptorhyncus at Rattrays Marsh, North East Tasmania. Tasmanian Nat 82:1–5

    Google Scholar 

  • Iribarne O, Bortolus A, Botto F (1997) Between-habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:137–145

    Article  Google Scholar 

  • Jansson IM, McLoughlin S, Vajda V (2008) Early Jurassic annelid cocoons from eastern Australia. Alcheringa 32:285–296

    Article  Google Scholar 

  • Jeanson C (1964) Micromorphology and experimental soil zoology: contribution to the study, by means of giant-sized thin sections, of earthworm-produced artificial soil structure. In: Jongerius A (ed) Soil micromorphology. Proceedings of the 2nd international workshop meeting of soil micromorphology, Arnhem, The Netherlands, pp 47–55

    Google Scholar 

  • Jeanson C (1971) Structure d’une galerie de lombrie a la microsonde electronique. In: Jongerius A (ed) IV colloquium pedobiologiae INRA publ 71–77:513–525

    Google Scholar 

  • Jégou D, Cluzeau D, Wolf HJ, Gandon Y, Tréhen P (1998) Assessment of the burrow system of Lumbricus terrestris, Aporrectodea giardi and Aporrectodea caliginosa using X-ray computed tomography. Biol Fert Soils 26:116–121

    Google Scholar 

  • Jégou D, Hallaire V, Cluzeau D, Tréhen P (1999) Characterisation of the burrow system of the earthworms Lumbricus terrestris and Aporrectodea giardi using X-ray computed tomography and image analysis. Biol Fert Soils 29:314–318

    Article  Google Scholar 

  • Jégou D, Schrader S, Diestel H, Cluzeau D (2001) Morphological. Physical and biochemical characteristics of burrow walls formed by earthworms. Appl Soil Ecol 17:165–174

    Article  Google Scholar 

  • Jiménez JJ, Brown GG, Decaëns T, Feijoo A, Lavelle P (2000) Differences in the timing of diapause and patterns of aestivation in tropical earthworms. Pedobiologia 44:677–694

    Article  Google Scholar 

  • Joschko M, Graff O, Muller PC, Kotzke K, Lindner P, Pretschner DP, Larink O (1991) A non-destructive method for the morphological assessment of earthworm burrow system in three dimensions by X-ray computed tomography. Biol Fert Soils 11:88–92

    Article  Google Scholar 

  • Jouquet P, Dauber J, Lagerlof J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32:153–164

    Article  Google Scholar 

  • Kilian E (1959) La construcción de los tubos habitacionales del Parastacus nicoleti (Philippi, 1882). Fac Estudios Generales, Univ Austral de Chile 1:1–7

    Google Scholar 

  • Lake PS, Newcombe KJ (1975) Observations on the ecology of the crayfish Parastacoides tasmanicus (Decapoda: Parastacidae) from South-Western Tasmania. Aust Zool 18:197–214

    Google Scholar 

  • Langmaack M, Schrader S, Rapp-Bernhardt U, Kotzke K (1999) Quantitative analysis of earthworm burrow systems with respect to biological soil structure regeneration after soil compaction. Biol Fertil Soils 28:219–229

    Article  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptative strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Article  Google Scholar 

  • Lavelle P, Barois I, Martin A, Zaidi Z, Schaefer R (1989) Management of earthworm populations in agro-ecosystems: a possible way to maintain soil quality? In: Clarholm M, Bergstrom L (eds) Ecology of Arable Land. Kluwer Academic, Stockholm, pp 109–122

    Google Scholar 

  • Lee KE (1985) Earthworms. Their ecology and relationships with soils and land use. Academic, London

    Google Scholar 

  • Lee KE, Smettem KRJ (1995) Identification and manipulation of soil biopores for the management of subsoil problems. In: Jayawardane NS, Stewart BA (eds) Subsoil management techniques. Lewis, London, pp 211–244

    Google Scholar 

  • Lewy Z, Goldring R (2006) Campanian crustacean burrow system from Israel with brood and nursery chambers representing communal organization. Palaeontology 49:133–140

    Article  Google Scholar 

  • Ligthart TN (1997) Thin section analysis of earthworm burrow disintegration in a permanent pasture. Geoderma 75:135–148

    Article  Google Scholar 

  • Ligthart TN, Peek GJWC, Taber EJ (1993) A method for the three-dimensional mapping of earthworm burrows systems. Geoderma 57:129–141

    Article  Google Scholar 

  • Lim SSL, Heng MMS (2007) Mangrove micro-habitat influence on bioturbative activities and burrow morphology of the fiddler crab, Uca annulipes (H. Milne Edwards, 1837) (Decapoda, Ocypodidae). Crustaceana 80:31–45

    Article  Google Scholar 

  • Lim SSL, Rosiah A (2007) Influence of pneumatophores on the burrow morphology of Uca annulipes (H. Milne Edwards, 1837) (Brachyura, Ocypodidae) in the field and in simulated mangrove micro-habitats. Crustaceana 80:1327–1338

    Article  Google Scholar 

  • Litulo C (2005) Population structure and breeding biology of the hairy crab Pilumnus vespertilio (Fabricius, 1973) (Crustacea: Brachyura: Pilumnidae) in southern Mozambique. J Nat Hist 39:1359–1366

    Article  Google Scholar 

  • Maitland P, Maitland D (1985) The Australian desert crab. Aust Nat Hist 21:496–498

    Google Scholar 

  • Manum SB, Bose MN, Sawyer RT (1991) Clitellate cocoons in freshwater deposits since the Triassic. Zool Scrip 20:347–366

    Article  Google Scholar 

  • Martin AJ (2006) A composite trace fossil of decapod and hymenopteran origin in the Rice Bay Formation (Holocene), San Salvador, Bahamas. In: 12th Symposium on the geology of the Bahamas and other carbonate regions, pp 99–112

    Google Scholar 

  • Martin AJ, Rich TH, Poore GCB, Schultz MB, Autin CM, Kool L, Vickers-Rich P (2008) Fossil evidence in Australia for oldest known freshwater crayfish of Gondwana. Gondwana Res 14:287–296

    Article  Google Scholar 

  • Melchor RN, de Valais S, Genise JF (2004) Middle Jurassic mammalian and dinosaur footprints and petrified forests from the volcaniclastic La Matilde Formation. In: Bellosi ES, Melchor RN (eds) Fieldtrip guidebook. First international congress on ichnology, Trelew, Argentina, pp 47–63

    Google Scholar 

  • Melchor RN, Bromley RG, Bedatou E (2010a) Spongeliomorpha in nomarine settings: an ichnotaxonomic approach. Earth Environ Sci Trans R Soc Edinb 100:429–436

    Google Scholar 

  • Melchor RN, Genise JF, Sánchez MV, Sarzetti L, Umazano M (2010b) Taphonomy of modern traces in volcaniclastic deposits: the eruption of Chaiten volcano (2008–2010) as a natural laboratory. In: Resúmenes del I simposio latinoamericano de icnología, Sao Leopoldo, Brasil, p 45

    Google Scholar 

  • Melchor RN, Genise JF, Farina JL, Sánchez MV, Sarzetti LC, Visconti G (2010c) Large striated burrows from fluvial deposits of the Neogene Vinchina Formation, La Rioja, Argentina: a crab origin suggested by neoichnology and sedimentology. Palaeogeogr Palaeoclimatol Palaeoecol 291:400–418

    Google Scholar 

  • Miller MF (2003b) Style of behavioural complexity recorded by selected trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 192:33–43

    Article  Google Scholar 

  • Morrone JJ, Lopretto EC (1994) Distributional patterns of freshwater Decapoda (Crustacea: Malacostraca) in southern South America: a panbiogeographic approach. J Biogeogr 21:97–109

    Article  Google Scholar 

  • Nesbitt EA, Campbell KA (2002) A new Psilonichnus ichnospecies attributed to mud shrimp Upogebia in estuarine settings. J Paleontol 76:892–901

    Google Scholar 

  • Nesbitt EA, Campbell KA (2006) Fossil pantries crustacean debris storage chambers in late Cenozoic estuarine sands. In: Abstracts of the Philadelphia annual meeting of the geological society of America, pp 178–182

    Google Scholar 

  • Nordhaus I, Wolff M, Diele K (2006) Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Estuar Coast Shelf Sci 67:239–250

    Article  Google Scholar 

  • Pérez-Chi A (2005) Densities, diel activity, burrow shape, and habitat characteristics of Gecarcinus (Johngarthia) planatus Stimpson, 1860 (Decapoda, Brachyura, Gecarcinidae) at Socorro Island, Revillagigedo, México. Crustaceana 78:255–272

    Article  Google Scholar 

  • Pervesler P, Uchman A (2009) A new Y−shaped trace fossil attributed to upogebiid crustaceans from Early Pleistocene of Italy. Acta Palaeontol Pol 54:135–142

    Article  Google Scholar 

  • Pickerill RK (1989) Compaginatichnus: a new ichnogenus from Ordovician flysch of eastern Canada. J Paleontol 63:913–919

    Article  Google Scholar 

  • Pierce TG, Oates K, Carruthers WJ (1990) A fossil earthworm embryo (Oligochaeta) from beneath a Late Bronze Age midden at Potterne, Wiltshire, UK. J Zool 220:537–542

    Article  Google Scholar 

  • Powers LW, Bliss DE (1983) Terrestrial adaptations. In: Vernberg FJ, Vernberg WB (eds) The biology of Crustacea, vol 8, Environmental adaptations. Academic Press, New York, pp 271–333

    Google Scholar 

  • Ratcliffe BC, Fagerstrom JA (1980) Invertebrate lebensspuren of Holocene floodplains: their morphology, origin and paleoecological significance. J Paleontol 54:614–630

    Google Scholar 

  • Retallack GJ (1976) Triassic palaeosols in the Upper Narrabeen Group of New South Wales. Part I: Features of the palaeosols. J Geol Soc Aust 23:383–399

    Article  Google Scholar 

  • Retallack GJ (2004) Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, USA. Palaeogeogr Palaeoclimatol Palaeoecol 207:203–237

    Article  Google Scholar 

  • Richardson AMM (1983) The effect of the burrows of a crayfish on the respiration of the surrounding soil. Soil Biol Biochem 15:239–242

    Article  Google Scholar 

  • Richardson AMM, Wong V (1995) The effect of a burrowing crayfish, Parastacoides sp., on the vegetation of Tasmanian wet Heathlands. Freshwater Crayfish 10:174–182

    Google Scholar 

  • Richter R, Richter E (1939) Marken und Spuren aus allen Zeiten. III. Line Lebens-Spur (Syncoprulus pharmaceus), gemeinsam den rheinischen und böhmischen Ordovicicum. Senckenbergiana 21:152–168

    Google Scholar 

  • Rudolph EH (1997) Aspectos fisicoquímicos del habitat y morfología de las galerías del camarón excavador Parastacus nicoleti (Philippi, 1882) (Decapoda: Parastacidae) en el sur de Chile. Gayana 61:97–108

    Google Scholar 

  • Rudolph EH, Crandall KA (2005) A new species of burrowing crayfish, Virilastacus rucapihuelensis (Custacea: Decapoda: Parastacidae), from southern Chile. Proc Biol Soc Wash 118:765–776

    Article  Google Scholar 

  • Sánchez MV, Genise JF (2009) Cleptoparasitism and detritivory in dung beetle fossil brood balls from Patagonia, Argentina. Palaeontology 52:837–848

    Article  Google Scholar 

  • Sánchez MV, Genise JF, Bellosi ES, Román-Carrión JL, Cantil LF (2013) Dung beetle brood balls from the Pleistocene highland palaeosols of Andean Ecuador: A reassessment of Sauer’s Coprinisphaera and their palaeoenvironments. Palaeogeogr Palaeoclimatol Palaeoecol 386:257–274

    Article  Google Scholar 

  • Savazzi E (1985) Functional morphology of the cuticular terraces in burrowing terrestrial brachyuran decapods. Lethaia 18:147–154

    Article  Google Scholar 

  • Schwert DP (1979) Description and significance of a fossil earthworm (Oligochaeta: Lumbricidae) cocoon from postglacial sediments in southern Ontario. Can J Zool 57:1402–1405

    Article  Google Scholar 

  • Seike K, Nara M (2007) Occurrence of bioglyphs on Ocypode crab burrows in a modern sandy beach and its palaeoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 252:458–463

    Article  Google Scholar 

  • Seike K, Nara M (2008) Burrow morphologies of the ghost crabs Ocypode ceratophthalma and O. sinensis in foreshore, backshore, and dune subenvironments of a sandy beach in Japan. J Geol Soc Jpn 114:591–596

    Article  Google Scholar 

  • Sherman PM (2003) Effects of land crabs on leaf litter distribution and accumulations in a mainland tropical rain forest. Biotropica 35:365–374

    Article  Google Scholar 

  • Shimoda K, Tamaki A (2004) Burrow morphology of the ghost shrimp Nihonotrypaea petalura (Decapoda: Thalassinidea: Callianassidae) from western Kyushu, Japan. Mar Biol Berl 144:723–734

    Article  Google Scholar 

  • Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2008a) Naktodemasis bowni: new ichnogenus and ichnospecies for adhesive meniscate burrows (AMB), paleoenvironmental implications, Paleogene Willwood Formation, Bighorn Basin, Wyoming. J Paleontol 82:267–278

    Article  Google Scholar 

  • Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2008b) Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum. Palaios 23:683–699

    Article  Google Scholar 

  • Smith JJ, Hasiotis ST, Woody DT, Kraus MJ (2008c) Paleoclimatic implications of crayfish-mediated prismatic structures in paleosols of the Paleogene Willwood Formation, Bighorn Basin, Wyoming, USA. J Sediment Res 78:323–334

    Article  Google Scholar 

  • Sokol A (1987) A note on the existence of pre-Pleistocene fossils of parastacid crayfish. Victorian Nat 104:81–82

    Google Scholar 

  • Statzner B, Fievet E, Champagne JY, Morel R, Herouin E (2000) Crayfish as geomorphic agents and ecosystem engineers: biological behavior affects sand and gravel erosion in experimental streams. Limnol Oceanogr 45:1030–1040

    Article  Google Scholar 

  • Statzner B, Peltret O, Tomanova S (2003) Crayfish as geomorphic agents and ecosystem engineers: effect of a biomass gradient on baseflow and flood-induced transport of gravel and sand in experimental streams. Freshwater Biol 48:147–163

    Article  Google Scholar 

  • Stone EL (1993) Soil burrowing and mixing by a crayfish. Soil Sci Soc Am J 57:1096–1099

    Article  Google Scholar 

  • Suter PJ, Richardson AMM (1977) The biology of two species of Engaeus (Decapoda: Parastacidae) in Tasmania III. Habitat, food, associated fauna and distribution. Aust J Mar Freshwater Res 28:95–103

    Article  Google Scholar 

  • Taylor RS, Schram FR, Yan-Bin S (1999) A new crayfish family (Decapoda: Astacida) from the Upper Jurassic of China, with a reinterpretation of other Chinese crayfish taxa. Paleontol Res 3:121–136

    Google Scholar 

  • Tiunov AV, Bonkowski M, Alphei J, Scheu S (2001) Microflora, protozoa and nematoda in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia 45:46–60

    Article  Google Scholar 

  • Toon A, Pérez-Losada M, Schweitzer CE, Feldmann RM, Carlson M, Crandall KA (2010) Gondwanan radiation of the Southern Hemisphere crayfishes (Decapoda: Parastacidae): evidence from fossils and molecules. J Biogeogr 37:2275–2290

    Article  Google Scholar 

  • Tosolini AMP, Pole M (2010) Insect and clitellate annelid traces in mesofossil assemblages from the Cretaceous of Australasia. Alcheringa 34:397–419

    Article  Google Scholar 

  • Tudhoppe AW, Scoffin TP (1984) The effect of Callianassa bioturbation on the preservation of carbonate grains in Davis Reef lagoon, Great Barrier Reef, Australia. J Sediment Petrol 54:1091–1096

    Google Scholar 

  • Uchman A (1995) Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-Arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15:1–115

    Google Scholar 

  • Vannini M (1980) Researches on the coast of Somalia. The shore and the dune of Sar Uanlr. 27. Burrows and digging behaviour on Ocypode and other crabs (Crustacea, Brachyura). Monitore Zool Ital 13:11–44

    Article  Google Scholar 

  • Vannini M, Cannicci S, Berti R, Innocenti G (2003) Cardisoma carnifex (Brachyura): where have all the babies gone? J Crustac Biol 23:55–59

    Article  Google Scholar 

  • Verde M, Martínez S (2004) A new ichnogenus for crustacean trace fossils from the late Miocene Camacho formation of Uruguay. Palaeontology 47:39–49

    Article  Google Scholar 

  • Verde M, Ubilla M, Jimenez JJ, Genise JF (2007) A new earthworm trace fossil from paleosols: aestivation chambers from the late Pleistocene Sopas Formation of Uruguay. Palaeogeogr Palaeoclimat Palaeoecol 243:339–347

    Article  Google Scholar 

  • Verde M, Ubilla M, Roland G (2013) Castrichnus n. isp., earthworm aestivation chambers in early Holocene paleosols from southern Uruguay. In: Resúmenes del segundo simposio latinoamericano de icnología, Santa Rosa, La Pampa, p 69

    Google Scholar 

  • Warner GF (1977) The biology of crabs. Elek-Science, London

    Google Scholar 

  • Welch SM, Eversole AG (2006) The occurrence of primary burrowing crayfish in terrestrial habitat. Biol Conserv 130:458–464

    Article  Google Scholar 

  • Wilmsen M, Niebuhr B (2014) The rosetted fossil Dactyloidites ottoi (Geinitz, 1849) from the Cenomanian (Upper Cretaceous) of Saxony and Bavaria (Germany): ichnotaxonomic remarks and palaeoenvironmental implications. Paläontol Z 88:123–138

    Article  Google Scholar 

  • Wyatt TD (1986) How a subsocial intertidal beetle, Bledius spectabilis, prevents flooding and anoxia in its burrow. Behav Ecol Sociobiol 19:323–321

    Article  Google Scholar 

  • Wyatt TD (1993) Submarine beetles. Nat Hist 7:6–8

    Google Scholar 

  • Zonneveld JP, Lavigne JM, Bartels WS, Gunnell GF (2006) Lunulichnus tuberosus ichnogen. and ichnosp. nov. from the Early Eocene Wasatch Formation, Fossil Butte National Monument, Wyoming: an arthropod-constructed trace fossil associated with alluvial firmgrounds. Ichnos 13:87–94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Genise, J.F. (2017). Soil Neighbors I: Traces of Other Organisms in Paleosols. Crustaceans and Earthworms. In: Ichnoentomology. Topics in Geobiology, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-28210-7_15

Download citation

Publish with us

Policies and ethics