Abstract
Accurate segmentation of hippocampus from infant magnetic resonance (MR) images is very important in the study of early brain development and neurological disorder. Recently, multi-atlas patch-based label fusion methods have shown a great success in segmenting anatomical structures from medical images. However, the dramatic appearance change from birth to 1-year-old and the poor image contrast make the existing label fusion methods less competitive to handle infant brain images. To alleviate these difficulties, we propose a novel multi-atlas and multi-modal label fusion method, which can unanimously label for all voxels by propagating the anatomical labels on a hypergraph. Specifically, we consider not only all voxels within the target image but also voxels across the atlas images as the vertexes in the hypergraph. Each hyperedge encodes a high-order correlation, among a set of vertexes, in different perspectives which incorporate (1) feature affinity within the multi-modal feature space, (2) spatial coherence within target image, and (3) population heuristics from multiple atlases. In addition, our label fusion method further allows those reliable voxels to supervise the label estimation on other difficult-to-label voxels, based on the established hyperedges, until all the target image voxels reach the unanimous labeling result. We evaluate our proposed label fusion method in segmenting hippocampus from T1 and T2 weighted MR images acquired from at 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old. Our segmentation results achieves improvement of labeling accuracy over the conventional state-of-the-art label fusion methods, which shows a great potential to facilitate the early infant brain studies.
Dong and Guo-These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Knickmeyer, R.C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J.K., Hamer, R.M., Lin, W., Gerig, G., Gilmore, J.H.: A structural MRI study of human brain development from birth to 2 years. J. Neurosci. Off. J. Soc. Neurosci. 28, 12176–12182 (2008)
Wang, L., Shi, F., Yap, P.-T., Gilmore, J.H., Lin, W., Shen, D.: 4D multi-modality tissue segmentation of serial infant images. PLoS ONE 7, e44596 (2012)
Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans. IEEE Trans. Med. Imaging 28, 1000–1010 (2009)
Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54, 940–954 (2011)
Zhang, D., Guo, Q., Wu, G., Shen, D.: Sparse patch-based label fusion for multi-atlas segmentation. In: Yap, P.-T., Liu, T., Shen, D., Westin, C.-F., Shen, L. (eds.) MBIA 2012. LNCS, vol. 7509, pp. 94–102. Springer, Heidelberg (2012)
Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)
Gao, Y., Ji, R., Cui, P., Dai, Q., Hua, G.: Hyperspectral image classification through bilayer graph-based learning. IEEE Trans. Image Process. 23(7), 2769–2778 (2014)
Gao, Y., Wang, M., Zha, Z.-J., Shen, J., Li, X., Wu, X.: Visual-textual joint relevance learning for tag-based social image search. IEEE Trans. Image Process. 22(1), 363–376 (2013)
Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)
Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Proceedings of NIPS, vol. 19, pp. 1601–1608 (2006)
Shi, F., Wang, L., Dai, Y., Gilmore, J.H., Lin, W., Shen, D.: LABEL: pediatric brain extraction using learning-based meta-algorithm. NeuroImage 62, 1975–1986 (2012)
Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dong, P., Guo, Y., Shen, D., Wu, G. (2015). Multi-atlas and Multi-modal Hippocampus Segmentation for Infant MR Brain Images by Propagating Anatomical Labels on Hypergraph. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B., Rueckert, D. (eds) Patch-Based Techniques in Medical Imaging. Patch-MI 2015. Lecture Notes in Computer Science(), vol 9467. Springer, Cham. https://doi.org/10.1007/978-3-319-28194-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-28194-0_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28193-3
Online ISBN: 978-3-319-28194-0
eBook Packages: Computer ScienceComputer Science (R0)