Skip to main content

Extraction of Dispersion Parameters

  • Chapter
  • First Online:
Tunable Microwave Metamaterial Structures

Part of the book series: Springer Theses ((Springer Theses))

  • 1406 Accesses

Abstract

As demonstrated previously, the propagation of waves in distributed and discrete periodic structures can be described by a set of dispersion parameters such as wavenumber and Bloch impedance or by effective material parameters. In this chapter, different methods to obtain these parameters from a given geometry are introduced and investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These scattering parameters usually originate from fullwave simulations or measurements where they cannot be obtained analytically.

References

  1. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970)

    Article  Google Scholar 

  2. W. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62(1), 33–36 (1974)

    Article  Google Scholar 

  3. D. Frickey, Conversions between s, z, y, h, abcd, and t parameters which are valid for complex source and load impedances. IEEE Trans. Microw. Theory Tech. 42, 205–211 (1994)

    Article  Google Scholar 

  4. V.V. Varadan, R. Ro, Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality. IEEE Trans. Microw. Theory Tech. 55, 2224–2230 (2007)

    Article  Google Scholar 

  5. Z. Szabo, G.-H. Park, R. Hedge, E.-P. Li, A unique extraction of metamaterial parameters based on kramers-kronig relationship. IEEE Trans. Microw. Theory Tech. 58(10), 2646–2653 (2010)

    Article  Google Scholar 

  6. R. Collin, I. Antennas, P. Society, Field Theory of Guided Waves, The IEEE/OUP Series on Electromagnetic Wave Theory (Formerly IEEE Only), Series Editor Series (IEEE Press, New York, 1991)

    MATH  Google Scholar 

  7. B. Bandlow, R. Schuhmann, G. Lubkowski, T. Weiland, Analysis of single-cell modeling of periodic metamaterial structures. IEEE Trans. Magn. 44(6), 1662–1665 (2008)

    Article  Google Scholar 

  8. R. Schuhmann, B. Bandlow, G. Lubkowski, T. Weiland, Micro- and macroscopic simulation of periodic metamaterials. Adv. Radio Sci. 6, 77–82 (2008)

    Article  Google Scholar 

  9. G. Lubkowski, B. Bandlow, R. Schuhmann, T. Weiland, Effective modeling of double negative metamaterial macrostructures. IEEE Trans. Microw. Theory Tech. 57(5), 1136–1146 (2009)

    Article  Google Scholar 

  10. J. Pendry, A. Holden, D. Robbins, W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  11. D.R. Smith, J.B. Pendry, Homogenization of metamaterials by field averaging (invited paper). J. Opt. Soc. Am. B 23, 391–403 (2006)

    Article  Google Scholar 

  12. C. Simovski, Material parameters of metamaterials (a review). Opt. Spectrosc. 107(5), 726–753 (2009)

    Article  Google Scholar 

  13. C.R. Simovski, On electromagnetic characterization and homogenization of nanostructured metamaterials. J. Opt. 13(1), 013001 (2011)

    Article  Google Scholar 

  14. O. Acher, A. Adenot, F. Duverger, Fresnel coefficients at an interface with a lamellar composite material. Phys. Rev. B 62(20), 13748 (2000)

    Article  Google Scholar 

  15. J.-M. Lerat, N. Malléjac, O. Acher, Determination of the effective parameters of a metamaterial by field summation method. J. Appl. Phys. 100(8), 084908 (2006)

    Article  Google Scholar 

  16. S. Boscolo, C. Conti, M. Midrio, C. Someda, Numerical analysis of propagation and impedance matching in 2d photonic crystal waveguides with finite length. J. Light. Technol. 20, 304–310 (2002)

    Article  Google Scholar 

  17. R. Biswas, Z.Y. Li, K.M. Ho, Impedance of photonic crystals and photonic crystal waveguides. Appl. Phys. Lett. 84(8), 1254–1256 (2004)

    Article  Google Scholar 

  18. G. Lubkowski, Simulation of Electromagnetic Fields in Double Negative Metamaterials. Ph.D. thesis, Technische Universität Darmstadt, 2009

    Google Scholar 

  19. C. Caloz, T. Itoh, Array factor approach of leaky-wave antennas and application to 1-d/2-d composite right/left-handed (crlh) structures. IEEE Microw. Wirel. Compon. Lett. 14, 274–276 (2004)

    Article  Google Scholar 

  20. Z. Li, J. Wang, F. Li, Prediction of radiation patterns of the crlh leaky-wave antennas by different approaches, in IEEE International Conference on Microwave Technology Computational Electromagnetics (ICMTCE) (2011)

    Google Scholar 

  21. M. Maasch, M. Roig, C. Damm, R. Jakoby, Efficient farfield computation from eigenmode simulations for leaky-wave antennas, in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1656–1657, July 2013

    Google Scholar 

  22. C.A. Balanis, Antenna Theory: Analysis and Design, 2nd edn. (Wiley-Interscience, Hoboken, 2005)

    Google Scholar 

  23. D. Jackson, C. Caloz, T. Itoh, Leaky-wave antennas. Proc. IEEE 100, 2194–2206 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Maasch .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maasch, M. (2016). Extraction of Dispersion Parameters. In: Tunable Microwave Metamaterial Structures . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28179-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28179-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28178-0

  • Online ISBN: 978-3-319-28179-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics