Bacterial Opportunistic Pathogens of Fish

  • Nicolas Derome
  • Jeff Gauthier
  • Sébastien Boutin
  • Martin Llewellyn
Chapter
Part of the Advances in Environmental Microbiology book series (AEM, volume 3)

Abstract

Bacterial opportunistic pathogens are defined as microorganisms causing disease in hosts experiencing atypical environmental stressors or having impaired immune function. In intensive aquacultural rearing, stress factors (such as hypoxia, abnormal pH, and high population density) generate an optimal setting for such pathogens to thrive. The status of these organisms—either as natural components of a healthy microbiome, or a latent step in disease establishment, or both—is still not entirely clear. In this chapter, we outline the current understanding (i.e., taxonomy, biology, disease impact, and current treatment options) of major opportunist bacterial genera of special interest in aquaculture: Aeromonas, Flavobacterium, and Vibrio. On a broader scale, we consider the importance of host/microbiota/environment interactions in opportunistic infections of teleost fish. Not only does this cross talk play a crucial role in defining disease, but their importance also reveals novel strategies to prevent and cure opportunistic diseases. As such, preventive measures to reduce host stress, along with active interventions to enhance (or restore) the protective effect of the microbiome (i.e., prebiotics, probiotics, synbiotics), can mitigate bacterial opportunistic diseases.

Keywords

Bacteria Opportunistic pathogens Aeromonas Flavobacter Vibrio Fish Teleosts Host–microbiota interactions Novel treatment strategies Prebiotics Probiotics Synbiotics 

References

  1. Abbott SL, Cheung WK, Kroske-Bystrom S et al (1992) Identification of Aeromonas strains to the genospecies level in the clinical laboratory. J Clin Microbiol 30:1262–1266PubMedPubMedCentralGoogle Scholar
  2. Adams SM (1990) Status and use of biological indicators for evaluating the effects of stress on fish. Am Fish Soc Symp 8:1–8Google Scholar
  3. Aguirre-Guzmán G, Ruíz HM, Ascencio F (2004) A review of extracellular virulence product of Vibrio species important in diseases of cultivated shrimp. Aquacult Res 35:1395–1404. doi:10.1111/j.1365-2109.2004.01165.x CrossRefGoogle Scholar
  4. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. doi:10.1016/j.cell.2006.02.015 PubMedCrossRefGoogle Scholar
  5. Amita K, Hoshino M, Honma T, Wakabayashi H (2000) An investigation on the distribution of Flavobacterium psychrophilum in the Umikawa River. Fish Pathol 35:193–197CrossRefGoogle Scholar
  6. Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426PubMedCrossRefGoogle Scholar
  7. Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. N Engl J Med 360:439–443. doi:10.1056/NEJMp0804651 PubMedCrossRefGoogle Scholar
  8. Arkoosh MR, Casillas E, Huffman P et al (1998) Increased susceptibility of juvenile Chinook salmon from a contaminated estuary to Vibrio anguillarum. Trans Am Fish Soc 127:360–374. doi:10.1577/1548-8659(1998)127<0360:ISOJCS>2.0.CO;2 CrossRefGoogle Scholar
  9. Armstrong SM, Hargrave BT, Haya K (2005) Antibiotic use in finfish aquaculture: modes of action, environmental fate, and microbial resistance. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Springer, Berlin, pp 341–357CrossRefGoogle Scholar
  10. Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235CrossRefGoogle Scholar
  11. Austin B (2006) The bacterial microflora of fish, revised. ScientificWorldJournal 6:931–945. doi:10.1100/tsw.2006.181 PubMedCrossRefGoogle Scholar
  12. Austin B (2010) Vibrios as causal agents of zoonoses. Vet Microbiol 140:310–317. doi:10.1016/j.vetmic.2009.03.015 PubMedCrossRefGoogle Scholar
  13. Austin B, Austin DA (2007) Bacterial fish pathogens: diseases of farmed and wild fish. Praxis, ChichesterGoogle Scholar
  14. Austin B, Austin DA (2012a) Aeromonadaceae Representative (Aeromonas salmonicida). In: Austin B, Austin DA (eds) Bacterial fish pathogens. Springer, Dordrecht, pp 147–228CrossRefGoogle Scholar
  15. Austin B, Austin DA (2012b) Aeromonadaceae representatives (motile aeromonads). In: Austin B, Austin DA (eds) Bacterial fish pathogens. Springer, Dordrecht, pp 147–228CrossRefGoogle Scholar
  16. Baerwald MR, Petersen JL, Hedrick RP, Schisler GJ, May B (2011) A major effect quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss). Heredity 106:920–926PubMedCrossRefGoogle Scholar
  17. Bagge J, Bagge O (1956) Vibrio anguillarum som årsak til ulcus sykdom hos torsk (Gadus callarias Linné). Nord Vet Med 8:481–492Google Scholar
  18. Balcazar J, Blas I, Ruizzarzuela I et al (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186. doi:10.1016/j.vetmic.2006.01.009 PubMedCrossRefGoogle Scholar
  19. Baras E (1995) Seasonal activities of Barbus barbus: effect of temperature on time-budgeting. J Fish Biol 46:806–818Google Scholar
  20. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26. doi:10.1016/0959-8030(91)90019-g CrossRefGoogle Scholar
  21. Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2:371–382. doi:10.1016/j.chom.2007.10.010 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Begon M, Harper JL, Townsend CR (1990) Ecology: individuals populations and communities, 2nd edn. Blackwell, OxfordGoogle Scholar
  23. Benmansour A, De Kinkelin P (1996) Live fish vaccines: history and perspectives. Dev Biol Stand 90:279–289Google Scholar
  24. Benson AK, Kelly SA, Legge R et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938. doi:10.1073/pnas.1007028107 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bergman AM (1909) Die rote Beulenkrankheit des Aals. Ber Aus K Bayer Vers 2:10–54Google Scholar
  26. Bernardet J-F, Bowman J (2006) The genus Flavobacterium. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes. Springer, New York, pp 481–531CrossRefGoogle Scholar
  27. Biering E, Villoing S, Sommerset I, Christie KE (2004) Update on viral vaccines for fish. Dev Biol 121:97–113Google Scholar
  28. Bly JE, Clem LW (1992) Temperature and teleost immune functions. Fish Shellfish Immunol 2:159–171CrossRefGoogle Scholar
  29. Boutin S, Bernatchez L, Audet C, Derôme N (2012) Antagonistic effect of indigenous skin bacteria of brook charr (Salvelinus fontinalis) against Flavobacterium columnare and F. psychrophilum. Vet Microbiol 155:355–361. doi:10.1016/j.vetmic.2011.09.002 PubMedCrossRefGoogle Scholar
  30. Boutin S, Audet C, Derôme N (2013a) Probiotic treatment by indigenous bacteria decreases mortality without disturbing the natural microbiota of Salvelinus fontinalis. Can J Microbiol 59:662–670PubMedCrossRefGoogle Scholar
  31. Boutin S, Bernatchez L, Audet C, Derôme N (2013b) Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS One 8:e84772. doi:10.1371/journal.pone.0084772 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Boutin S, Sauvage C, Bernatchez L et al (2014) Inter individual variations of the fish skin microbiota: host genetics basis of mutualism? PLoS One 9:e102649. doi:10.1371/journal.pone.0102649 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Bowden TJ, Thompson KD, Morgan AL et al (2007) Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol 22:695–706PubMedCrossRefGoogle Scholar
  34. Brown LL, Cox WT, Levine RP (1997) Evidence that the causal agent of bacterial cold-water disease Flavobacterium psychrophilum is transmitted within salmonid eggs. Dis Aquat Organ 29:213–218CrossRefGoogle Scholar
  35. Bruhn JB, Dalsgaard I, Nielsen KF et al (2005) Quorum sensing signal molecules (acylated homoserine lactones) in gram-negative fish pathogenic bacteria. Dis Aquat Organ 65:43–52PubMedCrossRefGoogle Scholar
  36. Bullock GL, Snieszko SF (1981) Fin rot, coldwater disease, and peduncle disease of salmonid fishes. U.S. Fish and Wildlife Service, Fish Disease Leaflet No. 25Google Scholar
  37. Burbank DR, Shah DH, LaPatra SE et al (2011) Enhanced resistance to coldwater disease following feeding of probiotic bacterial strains to rainbow trout (Oncorhynchus mykiss). Aquaculture 321:185–190. doi:10.1016/j.aquaculture.2011.09.004 CrossRefGoogle Scholar
  38. Burridge L, Weis JS, Cabello F et al (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306:7–23CrossRefGoogle Scholar
  39. Cahill MM (1990) Bacterial flora of fishes: a review. Microb Ecol 19:21–41. doi:10.1007/bf02015051 PubMedCrossRefGoogle Scholar
  40. Canestrini G (1893) La malattia dominante delle anguille: richerche batteriologiche. Atti R Ist Veneto Sci Lett Ed Arti 7:809–814Google Scholar
  41. Cerezuela R, Meseguer J, Esteban M (2011) Current knowledge in synbiotic use for fish aquaculture: a review. J Aquacult Res Dev 1:1–7Google Scholar
  42. Chakroun C, Grimont F, Urdaci MC, Bernardet J-F (1998) Fingerprinting of Flavobacterium psychrophilum isolates by ribotyping and plasmid profiling. Dis Aquat Organ 33:167–177PubMedCrossRefGoogle Scholar
  43. Chapra I, Hodgson J, Metcalf B, Poste G (1997) The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics. Antimicrob Agents Chemother 41:497–503Google Scholar
  44. Cipriano RC (2005) Intraovum infection caused by Flavobacterium psychrophilum among eggs from captive Atlantic salmon broodfish. J Aquat Anim Health 17:275–283CrossRefGoogle Scholar
  45. Cipriano RC, Bullock GL (2001) Furunculosis and other diseases caused by Aeromonas salmonicida. United States Geological SurveyGoogle Scholar
  46. Cipriano R, Bullock G, Pyle S (1984) Aeromonas hydrophila and other septicemias of fish. U.S. Fish and Wildlife Service PublicationsGoogle Scholar
  47. Coburn B, Sekirov I, Finlay BB (2007) Type III secretion systems and disease. Clin Microbiol Rev 20:535–549. doi:10.1128/CMR.00013-07 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cole DW, Cole R, Gaydos SJ et al (2009) Aquaculture: environmental, toxicological, and health issues. Int J Hyg Environ Health 212:369–377PubMedCrossRefGoogle Scholar
  49. Crothers‐Stomps C, Høj L, Bourne DG et al (2010) Isolation of lytic bacteriophage against Vibrio harveyi. J Appl Microbiol 108:1744–1750PubMedCrossRefGoogle Scholar
  50. Cummings JH, Macfarlane GT (2002) Gastrointestinal effects of prebiotics. Br J Nutr 87:S145–S151PubMedCrossRefGoogle Scholar
  51. Darwish AM, Ismaiel AA (2005) Genetic diversity of Flavobacterium columnare examined by restriction fragment length polymorphism and sequencing of the 16S ribosomal RNA gene and the 16S–23S rDNA spacer. Mol Cell Probes 19:267–274PubMedCrossRefGoogle Scholar
  52. Davis HS (1946) Care and diseases of trout. US Department of Interior Research Report No. 12Google Scholar
  53. Day T (2002) Virulence evolution via host exploitation and toxin production in spore-producing pathogens. Ecol Lett 5:471–476CrossRefGoogle Scholar
  54. Decostere A, Haesebrouck F, Devriese LA (1998) Characterization of four Flavobacterium columnare (Flexibacter columnaris) strains isolated from tropical fish. Vet Microbiol 62:35–45. doi:10.1016/s0378-1135(98)00196-5 PubMedCrossRefGoogle Scholar
  55. Decostere A, Lammens M, Haesebrouck F (2000) Difficulties in experimental infection studies with Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) using immersion, oral and anal challenges. Res Vet Sci 69:165–169PubMedCrossRefGoogle Scholar
  56. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258, http://dx.doi.org/10.1016/j.mib.2011.03.004 PubMedCrossRefGoogle Scholar
  57. Delneste Y, Beauvillain C, Jeannin P (2007) Immunité naturelle: Structure et fonction des toll-like receptors. Med Paris 23:67–74Google Scholar
  58. Dillon R, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153:503–509, http://dx.doi.org/10.1016/S0923-2508(02)01361-X PubMedCrossRefGoogle Scholar
  59. Dionne M, Miller KM, Dodson JJ, Bernatchez L (2009) MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Philos Trans R Soc Lond B Biol Sci 364:1555–1565. doi:10.1098/rstb.2009.0011 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dixon DR, Bainbridge BW, Darveau RP (2004) Modulation of the innate immune response within the periodontium. Periodontol 2000 35:53–74. doi:10.1111/j.0906-6713.2004.003556.x PubMedCrossRefGoogle Scholar
  61. Drouin de Bouville R de (1908) Les maladies des poissons d’eau douce d’Europe: d’après les travaux des divers icthyo-pathologistes et le traité du professeur Hofer (Deuxième édition, revue et augmentée)/par R. de Drouin de Bouville,… Berger-Levrault (Paris)Google Scholar
  62. Durborow RM, Thune RL, Hawke JP, Camus AC (1998) Columnaris disease: a bacterial infection caused by Flavobacterium columnare. Southern Regional Aquaculture Center (SRAC) Publication No. 479Google Scholar
  63. Ebert D (1998) Experimental evolution of parasites. Science 282:1432–1436PubMedCrossRefGoogle Scholar
  64. Ebert D, Mangin KL (1997) The influence of host demography on the evolution of virulence of a microsporidian gut parasite. Evolution 51:1828–1837CrossRefGoogle Scholar
  65. Egidius E (1987) Vibriosis: pathogenicity and pathology. A review. Aquaculture 67:15–28. doi:10.1016/0044-8486(87)90004-4 CrossRefGoogle Scholar
  66. Ekman E, Börjeson H, Johansson N (1999) Flavobacterium psychrophilum in Baltic salmon Salmo salar brood fish and their offspring. Dis Aquat Organ 37:159–163PubMedCrossRefGoogle Scholar
  67. Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839. doi:10.1016/s0145-305x(01)00038-6 PubMedCrossRefGoogle Scholar
  68. Emmerich R, Weibel F (1890) Über eine durch Bakterien verursachte Infektionskrankheit der Forellen. Allg Fisch-Ztg 15:73–77, 85–92Google Scholar
  69. Evelyn TPT (1971) First records of vibriosis in pacific salmon cultured in Canada, and taxonomic status of the responsible bacterium, Vibrio anguillarum. J Fish Res Board Can 28:517–525. doi:10.1139/f71-073 CrossRefGoogle Scholar
  70. Farzanfar A (2006) The use of probiotics in shrimp aquaculture. FEMS Immunol Med Microbiol 48:149–158. doi:10.1111/j.1574-695X.2006.00116.x PubMedCrossRefGoogle Scholar
  71. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ferguson HW, Ostland VE, Byrne P, Lumsdsen JS (1991) Experimental production of bacterial gill disease in trout by horizontal transmission and by bath challenge. J Aquat Anim Health 3:118–123CrossRefGoogle Scholar
  73. Fijan N (1967) The survival of Chondrococcus columnaris in waters of different quality. Bull Off Int Epizoot 69:1159–1166Google Scholar
  74. Foott JS, Hedrick RP (1987) Seasonal occurrence of the infectious stage of proliferative kidney disease (PKD) and resistance of rainbow trout, Salmo gairdneri Richardson, to reinfection. J Fish Biol 30:477–483CrossRefGoogle Scholar
  75. Frank DN, Zhu W, Sartor RB, Li E (2011) Investigating the biological and clinical significance of human dysbioses. Trends Microbiol 19:427–434. doi:10.1016/j.tim.2011.06.005 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Frans I, Michiels CW, Bossier P et al (2011) Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis 34:643–661. doi:10.1111/j.1365-2761.2011.01279.x PubMedCrossRefGoogle Scholar
  77. Freestone PP, Sandrini SM, Haigh RD, Lyte M (2008) Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16:55–64PubMedCrossRefGoogle Scholar
  78. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695PubMedCrossRefGoogle Scholar
  79. Garduño RA, Kay WW (1992) Interaction of the fish pathogen Aeromonas salmonicida with rainbow trout macrophages. Infect Immun 60:4612–4620PubMedPubMedCentralGoogle Scholar
  80. Gatesoupe FJ (2010) Probiotics and other microbial manipulations in fish feeds: prospective health benefits. In: Watson RR, Preedy VR (eds) Bioactive foods in promoting health. Probiotics and prebiotics. Academic, San Diego, CA, pp 541–552CrossRefGoogle Scholar
  81. Geraylou Z, Souffreau C, Rurangwa E et al (2012) Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish Shellfish Immunol 33:718–724. doi:10.1016/j.fsi.2012.06.010 PubMedCrossRefGoogle Scholar
  82. Ghittino C, Latini M, Agnetti F et al (2003) Emerging pathologies in aquaculture: effects on production and food safety. Vet Res Commun 27:471–479. doi:10.1023/B:VERC.0000014204.37722.b6 PubMedCrossRefGoogle Scholar
  83. Gibson GR (2004) Fibre and effects on probiotics (the prebiotic concept). Clin Nutr Suppl 1:25–31CrossRefGoogle Scholar
  84. Gold HS, Moellering RC (1996) Antimicrobial-drug resistance. N Engl J Med 335:144–1453CrossRefGoogle Scholar
  85. Gram L, Ringø E (2005) Prospects of fish probiotics. In: Holzapfel WH, Naughton PJ (eds) Microbial ecology of the growing animal. Elsevier, Amsterdam, pp 379–417CrossRefGoogle Scholar
  86. Grisez L, Chair M, Sorgeloos P, Ollevier F (1996) Mode of infection and spread of Vibrio anguillarum in turbot Scophthalmus maximus larvae after oral challenge through live feed. Dis Aquat Organ 26:181–187CrossRefGoogle Scholar
  87. Han Y, Mo Z, Xiao P et al (2011) Characterization of EmpA protease in Vibrio anguillarum M3. J Ocean Univ Chin 10:379–384. doi:10.1007/s11802-011-1781-x CrossRefGoogle Scholar
  88. Hanley F, Brown H, Carberry J (1995) First observations on the effects of mannan oligosaccharide added to the hatchery diets for warmwater Hybrid Red Tilapia. In: Nutritional biotechnology in the feed and food industries. Proceedings of Alltech’s 11th annual symposium, Lexington, KYGoogle Scholar
  89. Hart S, Wrathmell AB, Harris JE, Grayson TH (1988) Gut immunology in fish: a review. Dev Comp Immunol 12:453–480PubMedCrossRefGoogle Scholar
  90. Håstein T, Gudding R, Evensen O (2004) Bacterial vaccines for fish—an update of the current situation worldwide. Dev Biol 121:55–74Google Scholar
  91. Heo G-J, Kasai K, Wakabayashi H (1990) Occurrence of Flavobacterium branchiophila associated with bacterial gill disease at a trout hatchery. Fish Pathol 25:99–105CrossRefGoogle Scholar
  92. Hjelm M, Riaza A, Formoso F et al (2004) Seasonal incidence of autochthonous antagonistic Roseobacter spp. and Vibrionaceae strains in a turbot larva (Scophthalmus maximus) rearing system. Appl Environ Microbiol 70:7288–7294. doi:10.1128/aem.70.12.7288-7294.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Hoare R, Hovland H, Langston AL et al (2002) Susceptibility of three different strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.) cultured at two different temperatures to Vibrio anguillarum and temperature effect on antibody response. Fish Shellfish Immunol 13:111–123PubMedCrossRefGoogle Scholar
  94. Holt RA, Rohovec JS, Fryer JL (1993) Bacterial coldwater disease. In: Inglis V, Roberts RJ, Bromage NR (eds) Bacterial disease of fish. Blackwell, Oxford, pp 3–22Google Scholar
  95. Horneman AJ, Ali A, Abbott SL (2007) Aeromonas. In: Murray PR, Baron EJ, Landry ML, Jorgensen JH, Pfaller MA (eds) Manual of clinical microbiology, 9th edn. ASM, Washington, DC, pp 715–722Google Scholar
  96. Iida Y, Mizokami A (1996) Outbreaks of coldwater disease in wild Ayu and Pale Chub. Fish Pathol 31:157–164. doi:10.3147/jsfp.31.157 CrossRefGoogle Scholar
  97. Izumi S, Liu H, Aranishi F, Wakabayashi H (2003) A novel serotype of Flavobacterium psychrophilum detected using antiserum against an isolate from amago, Oncorhynchus masou rhodurus Jordan & Gilbert, in Japan. J Fish Dis 26:677–680. doi:10.1046/j.1365-2761.2003.00502.x PubMedCrossRefGoogle Scholar
  98. Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73. doi:10.1128/CMR.00039-09 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Janda JM, Duffey PS (1988) Mesophilic aeromonads in human disease: current taxonomy, laboratory identification, and infectious disease spectrum. Rev Infect Dis 10:980–997PubMedCrossRefGoogle Scholar
  100. Johnson CM, Tatner MF, Horne MT (1985) Autoaggregation and extracellular A-layer protein in Aeromonas salmonicida. Aquaculture 46:163–166. doi:10.1016/0044-8486(85)90200-5 CrossRefGoogle Scholar
  101. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245PubMedCrossRefGoogle Scholar
  102. Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26:326–333. doi:10.1016/j.it.2005.04.008 PubMedCrossRefGoogle Scholar
  103. Kent ML, Dawe SC, Speare DJ (1999) Resistance to reinfection in chinook salmon Oncorhynchus tshawytscha to Loma salmonae (Microsporidia). Dis Aquat Organ 37:205PubMedCrossRefGoogle Scholar
  104. Kimura N, Wakabayashi H, Kudo S (1978) Studies on bacterial gill disease in salmonids, 1: Selection of bacterium transmitting gill disease. Fish Pathol 12:233–242CrossRefGoogle Scholar
  105. Kumagai A, Yamaoka S, Takahashi K et al (2000) Waterborne transmission of Flavobacterium psychrophilum in Coho salmon eggs. Gyobyo Kenkyu Fish Pathol 35:25–28CrossRefGoogle Scholar
  106. Langevin C, Blanco M, Martin SAM, Jouneau L, Bernardet J-F, Houel A, Lunazzi A, Duchaud E, Michel C, Quillet E, Boudinot P (2012) Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen Flavobacterium psychrophilum. PLoS One 7, e39126. doi:10.1371/journal.pone.0039126 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Larsen MH, Boesen HT (2001) Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol Lett 203:149–152. doi:10.1111/j.1574-6968.2001.tb10833.x PubMedCrossRefGoogle Scholar
  108. Le Moullac G, Soyez C, Saulnier D, Ansquer D, Avarre JC, Levy P (1998) Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish Shellfish Immunol 8:621–629. doi:10.1006/fsim.1998.0166 CrossRefGoogle Scholar
  109. Levy SB (1998) Multidrug resistance—a sign of the times. N Engl J Med 338:1376–1378PubMedCrossRefGoogle Scholar
  110. Lillehaug A, Lunestad BT, Grave K (2003) Epidemiology of bacterial diseases in Norwegian aquaculture—a description based on antibiotic prescription data for the ten-year period 1991 to 2000. Dis Aquat Organ 53:115–125PubMedCrossRefGoogle Scholar
  111. Lindsay J, Holden M (2006) Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6:186–201. doi:10.1007/s10142-005-0019-7 PubMedCrossRefGoogle Scholar
  112. Lipsitch M, Nowak MA, Ebert D, May RM (1995) The population dynamics of vertically and horizontally-transmitted parasites. Proc Biol Sci 260:321–327. doi:10.1098/rspb.1995.0099 PubMedCrossRefGoogle Scholar
  113. Littman RA, Bourne DG, Willis BL (2010) Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol Ecol 19:1978–1990. doi:10.1111/j.1365-294X.2010.04620.x PubMedCrossRefGoogle Scholar
  114. Liu H, Izumi S, Wakabayashi H (2001) Detection of Flavobacterium psychrophilum in various organs of ayu Plecoglossus altivelis by in situ hybridization. Fish Pathol 36:7–11CrossRefGoogle Scholar
  115. Loch TP, Faisal M (2010) Isolation of Aeromonas salmonicida subspecies salmonicida from Lake Whitefish (Coregonus clupeaformis) inhabiting Lakes Michigan and Huron. J Great Lakes Res 36(Suppl 1):13–17. doi:10.1016/j.jglr.2009.07.002 CrossRefGoogle Scholar
  116. Lorenzen E (1994) Studies on Flexibacter psychrophilus in relation to rainbow trout fry syndrome (RTFS). Royal Veterinary and Agricultural University, CopenhagenGoogle Scholar
  117. Lorenzen E, Olesen NJ (1997) Characterization of isolates of Flavobacterium psychrophilum associated with coldwater disease or rainbow trout fry syndrome II: serological studies. Dis Aquat Organ 31:209–220. doi:10.3354/dao031209 CrossRefGoogle Scholar
  118. Lowry T, Smith SA (2007) Aquatic zoonoses associated with food, bait, ornamental, and tropical fish. J Am Vet Med Assoc 231:876–880. doi:10.2460/javma.231.6.876 PubMedCrossRefGoogle Scholar
  119. Madetoja J, Dalsgaard I, Wiklund T (2002) Occurrence of Flavobacterium psychrophilum in fish-farming environments. Dis Aquat Organ 52:109–118CrossRefGoogle Scholar
  120. Madsen L, Dalsgaard I (1999) Reproducible methods for experimental infection with Flavobacterium psychrophilum in rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 36:169PubMedCrossRefGoogle Scholar
  121. Mahious A, Ollevier F (2005) Probiotics and prebiotics in aquaculture. In: 1st Regional workshop on techniques for enrichment for use in larviculture. Urmia, IranGoogle Scholar
  122. Marcil V, Delvin E, Seidman E et al (2002) Modulation of lipid synthesis, apolipoprotein biogenesis, and lipoprotein assembly by butyrate. Am J Physiol Gastrointest Liver Physiol 283:G340–G346PubMedCrossRefGoogle Scholar
  123. Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733PubMedPubMedCentralCrossRefGoogle Scholar
  124. Maslanik T, Tannura K, Mahaffey L et al (2012) Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1. PLoS One 7:e50636PubMedPubMedCentralCrossRefGoogle Scholar
  125. Maslowski KM, Mackay CR (2010) Diet, gut microbiota and immune responses. Nat Immunol 12:5–9CrossRefGoogle Scholar
  126. Massault C, Franch R, Haley C, De Koning DJ, Bovenhuis H, Pellizzari C, Patarnello T, Bargelloni L (2011) Quantitative trait loci for resistance to fish pasteurellosis in gilthead sea bream (Sparus aurata). Anim Genet 42:191–203PubMedCrossRefGoogle Scholar
  127. Matsuzaki S, Rashel M, Uchiyama J et al (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219PubMedCrossRefGoogle Scholar
  128. Mazmanian SK, Kasper DL (2006) The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 6:849–858PubMedCrossRefGoogle Scholar
  129. McGee K, Horstedt P, Milton DL (1996) Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol 178:5188–5198PubMedPubMedCentralGoogle Scholar
  130. McKnite AM, Perez-Munoz ME, Lu L et al (2012) Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One 7:e39191. doi:10.1371/journal.pone.0039191 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Medzhitov R, Janeway CA (1999) Innate immune induction of the adaptive immune response. Cold Spring Harb Symp Quant Biol 64:429–436. doi:10.1101/sqb.1999.64.429 PubMedCrossRefGoogle Scholar
  132. Merrifield DL, Dimitroglou A, Foey A et al (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18CrossRefGoogle Scholar
  133. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  134. Milton DL, O’Toole R, Horstedt P, Wolf-Watz H (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310–1319PubMedPubMedCentralGoogle Scholar
  135. Mohamed MH, Ahmed Refat NAG (2011) Pathological evaluation of probiotic, Bacillus subtilis, against Flavobacterium columnare in tilapia nilotica (Oreochromis niloticus) fish in Sharkia governorate, Egypt. J Am Sci 7:244–256Google Scholar
  136. Moloney R, Desbonnet L, Clarke G et al (2013) The microbiome: stress, health and disease. Mamm Genome 25:49–74. doi:10.1007/s00335-013-9488-5 PubMedCrossRefGoogle Scholar
  137. Moriarty DJW (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164:351–358. doi:10.1016/s0044-8486(98)00199-9 CrossRefGoogle Scholar
  138. Morin R (2010) L’utilisation des antibiotiques pour combattre la furonculose chez l’omble de fontaine génère de l’antibiorésistance chez Aeromonas salmonicida. Bull L’Association Aquaculteurs Qué 15:3–6Google Scholar
  139. Morris JJ, Lenski RE, Zinser ER (2012) The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio. doi:10.1128/mBio.00036-12 PubMedPubMedCentralGoogle Scholar
  140. Myhr E, Larsen JL, Lillehaug A et al (1991) Characterization of Vibrio anguillarum and closely related species isolated from farmed fish in Norway. Appl Environ Microbiol 57:2750–2757PubMedPubMedCentralGoogle Scholar
  141. Naik S, Bouladoux N, Wilhelm C et al (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119. doi:10.1126/science.1225152 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Nakanishi T, Ototake M (1997) Antigen uptake and immune responses after immersion vaccination. Dev Biol Stand 90:59PubMedGoogle Scholar
  143. Nakayama T, Lu H, Nomura N (2009) Inhibitory effects of Bacillus probionts on growth and toxin production of Vibrio harveyi pathogens of shrimp. Lett Appl Microbiol 49:679–684. doi:10.1111/j.1472-765X.2009.02725.x PubMedCrossRefGoogle Scholar
  144. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14. doi:10.1016/j.fsi.2010.02.017 PubMedCrossRefGoogle Scholar
  145. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322PubMedPubMedCentralGoogle Scholar
  146. Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25:187–192PubMedCrossRefGoogle Scholar
  147. Nematollahi A, Decostere A, Pasmans F, Haesebrouck F (2003) Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis 26:563–574. doi:10.1046/j.1365-2761.2003.00488.x PubMedCrossRefGoogle Scholar
  148. Nielsen ME, Høi L, Schmidt AS et al (2001) Is Aeromonas hydrophila the dominant motile Aeromonas species that causes disease outbreaks in aquaculture production in the Zhejiang Province of China? Dis Aquat Organ 46:23–29. doi:10.3354/dao046023 PubMedCrossRefGoogle Scholar
  149. Nikoskelainen S, Ouwehand AC, Bylund G et al (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15:443–452. doi:10.1016/s1050-4648(03)00023-8 PubMedCrossRefGoogle Scholar
  150. O’Mahony C, Scully P, O’Mahony D et al (2008) Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathog 4:e1000112. doi:10.1371/journal.ppat.1000112 PubMedPubMedCentralCrossRefGoogle Scholar
  151. O’Toole R, Milton DL, Wolf-Watz H (1996) Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum. Mol Microbiol 19:625–637PubMedCrossRefGoogle Scholar
  152. O’Toole R, Lundberg S, Fredriksson SA et al (1999) The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol 181:4308–4317PubMedPubMedCentralGoogle Scholar
  153. Ondračková M, Reichard M, Jurajda P, Gelnar M (2004) Seasonal dynamics of Posthodiplostomum cuticola (Digenea, Diplostomatidae) metacercariae and parasite-enhanced growth of juvenile host fish. Parasitol Res 93:131–136PubMedCrossRefGoogle Scholar
  154. Ostland VE, Lumsden JS, MacPhee DD, Ferguson HW (1994) Characteristics of Flavobacterium branchiophilum, the cause of salmonid bacterial gill disease in Ontario. J Aquat Anim Health 6:13–26CrossRefGoogle Scholar
  155. Ostland VE, MacPhee DD, Lumsden JS, Ferguson HW (1995) Virulence of Flavobacterium branchiophilum in experimentally infected salmonids. J Fish Dis 18:249–262. doi:10.1111/j.1365-2761.1995.tb00300.x CrossRefGoogle Scholar
  156. Ostland VE, McGrogan DG, Ferguson HW (1997) Cephalic osteochondritis and necrotic scleritis in intensively reared salmonids associated with Flexibacter psychrophilus. J Fish Dis 20:443–451. doi:10.1046/j.1365-2761.1997.00323.x CrossRefGoogle Scholar
  157. Ozaki A, Sakamoto T, Khoo S, Nakamura K, Coimbra MR, Akutsu T, Okamoto N (2001) Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 265:23–31PubMedCrossRefGoogle Scholar
  158. Paillard C, Le Roux F, Borrego JJ (2004) Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquat Living Resour 17:477–498. doi:10.1051/alr:2004054 CrossRefGoogle Scholar
  159. Palti Y (2011) Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol 35:1263–1272. doi:10.1016/j.dci.2011.03.006 PubMedCrossRefGoogle Scholar
  160. Pavey SA, Sevellec M, Adam W et al (2013) Nonparallelism in MHCIIbeta diversity accompanies nonparallelism in pathogen infection of lake whitefish (Coregonus clupeaformis) species pairs as revealed by next-generation sequencing. Mol Ecol 22:3833–3849. doi:10.1111/mec.12358 PubMedCrossRefGoogle Scholar
  161. Phillips I, Casewell M, Cox T et al (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52. doi:10.1093/jac/dkg483 PubMedCrossRefGoogle Scholar
  162. Pizarro-Cerdá J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124:715–727. doi:10.1016/j.cell.2006.02.012 PubMedCrossRefGoogle Scholar
  163. Plumb JA, Grizzle JM, Defigueiredo J (1976) Necrosis and bacterial infection in channel catfish (Ictalurus punctatus) following hypoxia. J Wildl Dis 12:247–253PubMedCrossRefGoogle Scholar
  164. Pulkkinen K, Suomalainen L-R, Read AF et al (2010) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc Biol Sci 277:593–600. doi:10.1098/rspb.2009.1659 PubMedCrossRefGoogle Scholar
  165. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241. doi:10.1016/j.cell.2004.07.002 PubMedCrossRefGoogle Scholar
  166. Ramsey MM, Whiteley M (2009) Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc Natl Acad Sci USA 106:1578–1583. doi:10.1073/pnas.0809533106 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Rangdale RE (1995) Studies on rainbow trout fry syndrome (RTFS). PhD thesis, University of Stirling, StirlingGoogle Scholar
  168. Rangdale RE, Richards RE, Alderman DJ (1996) Isolation of Cytophaga psychrophila, causal agent of rainbow trout fry syndrome (RTFS) from reproductive fluids and egg surfaces of rainbow trout (Oncorhynchus mykiss). Bull Eur Assoc Fish Pathol 16:63–67Google Scholar
  169. Rangdale RE, Richards RH, Alderman DJ (1997a) Colonisation of eyed rainbow trout ova with Flavobacterium psychrophilum leads to rainbow trout fry syndrome in fry. Bull Eur Assoc Fish Pathol 17:108–111Google Scholar
  170. Rangdale RE, Richards RH, Alderman DJ (1997b) Minimum inhibitory concentrations of selected antimicrobial compounds against Flavobacterium psychrophilum the causal agent of rainbow trout fry syndrome (RTFS). Aquaculture 158:193–201. doi:10.1016/s0044-8486(97)00202-0 CrossRefGoogle Scholar
  171. Reith ME, Singh RK, Curtis B et al (2008) The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9:427. doi:10.1186/1471-2164-9-427 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Revie CW, Gettinby G, Treasurer JW et al (2002) Temporal, environmental and management factors influencing the epidemiological patterns of sea lice (Lepeophtheirus salmonis) infestations on farmed Atlantic salmon (Salmo salar) in Scotland. Pest Manag Sci 58:576–584PubMedCrossRefGoogle Scholar
  173. Ringø E, Dimitroglou A, Hoseinifar SH, Davies SJ (2014) Prebiotics in finfish: an update. In: Merrifield DL, Ringø E (eds) Aquaculture nutrition: gut health, probiotics and prebiotics. Wiley-Blackwell, Oxford, pp 410–418Google Scholar
  174. Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830S–837SPubMedGoogle Scholar
  175. Rodríguez-Ramilo ST, Toro MA, Bouza C, Hermida M, Pardo BG, Cabaleiro S, Martínez P, Fernández J (2011) QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genomics 12:541. doi:10.1186/1471-2164-12-541 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Rurangwa E, Laranja JL, Van Houdt R et al (2009) Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono cultures in vitro. J Appl Microbiol 106:932–940PubMedCrossRefGoogle Scholar
  177. Sara M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868PubMedPubMedCentralCrossRefGoogle Scholar
  178. SCAN, European Commission Health and Consumer Protection Directorate-General (2003) Opinion of the scientific committee on Animal Nutrition on the criteria for assessing the safety of microorganisms resistant to antibiotics of human clinical and veterinary importanceGoogle Scholar
  179. Scott M (1968) The pathogenicity of Aeromonas salmonicida (Griffin) in sea and brackish waters. J Gen Microbiol 50:321–327. doi:10.1099/00221287-50-2-321 PubMedCrossRefGoogle Scholar
  180. Shivu MM, Rajeeva BC, Girisha SK et al (2007) Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environments along the coast of India. Environ Microbiol 9:322–331PubMedCrossRefGoogle Scholar
  181. Snieszko SF (1974) The effects of environmental stress on outbreaks of infectious diseases of fishes. J Fish Biol 6:197–208. doi:10.1111/j.1095-8649.1974.tb04537.x CrossRefGoogle Scholar
  182. Sommerset I, Krossøy B, Biering E, Frost P (2005) Vaccines for fish in aquaculture. Expert Rev Vaccines 4:89–101. doi:10.1586/14760584.4.1.89 PubMedCrossRefGoogle Scholar
  183. Sorensen SJ, Bailey M, Hansen LH et al (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710PubMedCrossRefGoogle Scholar
  184. Speare DJ, Ferguson HW (1989) Clinical and pathological features of common gill diseases of cultured salmonids in Ontario. Can Vet J 30:882PubMedPubMedCentralGoogle Scholar
  185. Speare DJ, Ferguson HW, Beamish FWM et al (1991) Pathology of bacterial gill disease: ultrastructure of branchial lesions. J Fish Dis 14:1–20CrossRefGoogle Scholar
  186. Starliper CE (2011) Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res 2:97–108. doi:10.1016/j.jare.2010.04.001 CrossRefGoogle Scholar
  187. Stecher B, Maier L, Hardt W-D (2013) “Blooming” in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol 11:277–284. doi:10.1038/nrmicro2989 PubMedCrossRefGoogle Scholar
  188. Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74:4070–4078PubMedPubMedCentralCrossRefGoogle Scholar
  189. Stephens C, Shapiro L (1997) Bacterial protein secretion—a target for new antibiotics? Chem Biol 4:637–641PubMedCrossRefGoogle Scholar
  190. Stork M, Di Lorenzo M, Welch TJ et al (2002) Plasmid-mediated iron uptake and virulence in Vibrio anguillarum. Plasmid 48:222–228PubMedCrossRefGoogle Scholar
  191. Stuber K, Burr SE, Braun M et al (2003) Type III secretion genes in Aeromonas salmonicida subsp. salmonicida are located on a large thermolabile virulence plasmid. J Clin Microbiol 41:3854–3856. doi:10.1128/JCM.41.8.3854-3856.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Sundell K, Wiklund T (2011) Effect of biofilm formation on antimicrobial tolerance of Flavobacterium psychrophilum. J Fish Dis 34:373–383. doi:10.1111/j.1365-2761.2011.01250.x PubMedCrossRefGoogle Scholar
  193. Tam B, Gough WA, Tsuji L (2011) The impact of warming on the appearance of furunculosis in fish of the James Bay region, Quebec, Canada. Reg Environ Change 11:123–132. doi:10.1007/s10113-010-0122-8 CrossRefGoogle Scholar
  194. Tanaka KH, Dallaire-Dufresne S, Daher RK et al (2012) An insertion sequence-dependent plasmid rearrangement in Aeromonas salmonicida causes the loss of the type three secretion system. PLoS One 7:e33725. doi:10.1371/journal.pone.0033725 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Touchon M, Barbier P, Bernardet J-F et al (2011) Complete genome sequence of the fish pathogen Flavobacterium branchiophilum. Appl Environ Microbiol 77:7656–7662PubMedPubMedCentralCrossRefGoogle Scholar
  196. Trivedi B (2012) Microbiome: the surface brigade. Nature 492:S60–S61PubMedCrossRefGoogle Scholar
  197. Trust TJ, Bull LM, Currie BR, Buckley JT (1979) Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), goldfish (Carassius auratus), and rainbow trout (Salmo gairdneri). J Fish Res Board Can 36:1174–1179. doi:10.1139/f79-169 CrossRefGoogle Scholar
  198. Turnbull JF (1993) Bacterial gill disease and fin rot. In: Inglis V, Roberts RJ, Bromage NR (eds) Bacterial disease fish. Halsted, New York, pp 40–58Google Scholar
  199. Vanden Bergh P, Frey J (2013) Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol. doi:10.1111/1751-7915.12091 Google Scholar
  200. Verrier ER, Dorson M, Mauger S, Torhy C, Ciobotaru C, Hervet C, Dechamp N, Genet C, Boudinot P, Quillet E (2013) Resistance to a rhabdovirus (VHSV) in rainbow trout: identification of a major QTL related to innate mechanisms. PLoS One 8, e55302PubMedPubMedCentralCrossRefGoogle Scholar
  201. Vatsos IN, Thompson KD, Adams A (2001) Adhesion of the fish pathogen Flavobacterium psychrophilum to unfertilized eggs of rainbow trout (Oncorhynchus mykiss) and n-hexadecane. Lett Appl Microbiol 33:178–182PubMedCrossRefGoogle Scholar
  202. Vatsos IN, Thompson KD, Adams A (2006) Colonization of rainbow trout, Oncorhynchus mykiss (Walbaum), eggs by Flavobacterium psychrophilum, the causative agent of rainbow trout fry syndrome. J Fish Dis 29:441–444PubMedCrossRefGoogle Scholar
  203. Vilches S, Jimenez N, Tomas JM, Merino S (2009) Aeromonas hydrophila AH-3 Type III secretion system expression and regulatory network. Appl Environ Microbiol 75:6382–6392. doi:10.1128/AEM.00222-09 PubMedPubMedCentralCrossRefGoogle Scholar
  204. Vinod MG, Shivu MM, Umesha KR et al (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117–124CrossRefGoogle Scholar
  205. Wakabayashi H (1991) Effect of environmental conditions on the infectivity of Flexibacter columnaris to fish. J Fish Dis 14:279–290. doi:10.1111/j.1365-2761.1991.tb00825.x CrossRefGoogle Scholar
  206. Wakabayashi H, Egusa S, Fryer JL (1980) Characteristics of filamentous bacteria isolated from a gill disease of salmonids. Can J Fish Aquat Sci 37:1499–1504CrossRefGoogle Scholar
  207. Wakabayashi H, Toyama T, Iida T (1994) A study on serotyping of Cytophaga-psychrophila isolated from fishes in Japan. Fish Pathol 29:101–104CrossRefGoogle Scholar
  208. Waldvogel FA (1999) New resistance in Staphylococcus aureus. N Engl J Med 340:556–557PubMedCrossRefGoogle Scholar
  209. Welker TL, Shoemaker CA, Arias CR, Klesius PH (2005) Transmission and detection of Flavobacterium columnare in channel catfish Ictalurus punctatus. Dis Aquat Organ 63:129–138PubMedCrossRefGoogle Scholar
  210. Whitehead NA, Barnard AM, Slater H et al (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404PubMedCrossRefGoogle Scholar
  211. Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996–997PubMedCrossRefGoogle Scholar
  212. Zapata AG, Varas A, Torroba M (1992) Seasonal variations in the immune system of lower vertebrates. Immunol Today 13:142–147PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nicolas Derome
    • 1
    • 2
  • Jeff Gauthier
    • 1
    • 2
  • Sébastien Boutin
    • 1
    • 2
    • 3
  • Martin Llewellyn
    • 1
    • 2
    • 4
  1. 1.Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
  2. 2.Département de BiologieUniversité LavalQuébecCanada
  3. 3.Department of Infectious Disease, Medical Microbiology and HygieneUniversität HeidelbergHeidelbergGermany
  4. 4.Molecular Ecology and Fisheries Genetics Laboratory, School of Biological SciencesBangor UniversityGwyneddUK

Personalised recommendations