Fast and Frugal Heuristics at Research Frontiers

  • Thomas NicklesEmail author
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 25)


How should we model scientific decision-making at the frontiers of research? This chapter explores the applicability of Gerd Gigerenzer’s “fast and frugal” heuristics to frontier contexts, i.e., to so-called context of discovery. Such heuristics require only one or a very few steps to a decision and only a little information. While the approach is somewhat promising, given the limited resources in frontier contexts, trying to extend it to fairly “wild” frontiers raises challenging questions. This chapter attempts to frame the issues (rather than to provide resolutions to them), and thereby to cast light on frontier contexts, which have been misunderstood by philosophers, the general public, and funding agencies alike.


Context of discovery Decision under uncertainty Fast and frugal heuristics Frontier research Gigerenzer 



Thanks to Emiliano Ippoliti for organizing this stimulating conference, and thanks to him and to Fabio Sterpetti for their infinite patience and for work on the volume. Thanks also to Markus Kemmelmeier for a helpful comment.


  1. Bishop, M., Trout, J.D.: Epistemology and the Psychology of Human Judgment. Oxford University Press, Oxford (2005)CrossRefGoogle Scholar
  2. Braben, D.W.: Pioneering Research: A Risk Worth Taking. Wiley, Hoboken, NJ (2004)Google Scholar
  3. Campbell, D.T.: Evolutionary Epistemology. In: Schilpp, P.A. (ed.) The Philosophy of Karl R. Popper, 1, pp. 412–463. Open Court, Lasalle, IL (1974)Google Scholar
  4. Damasio, A.: Descartes’ Error. G.P. Putnam, New York (1994)Google Scholar
  5. Dawes, R.: The robust beauty of improper linear models in decision making. Am. Psychol. 34(7), 571–582 (1979)CrossRefGoogle Scholar
  6. Dennett, D.C.: The Intentional Stance. MIT Press, Cambridge, MA (1987)Google Scholar
  7. Dennett, D.C.: Darwin’s Dangerous Idea: Evolution and the Meanings of Life. Simon & Schuster, New York (1995)Google Scholar
  8. Dennett, D.C.: Kinds of Minds: Toward an Understanding of Consciousness. Basic Books, New York (1996)Google Scholar
  9. Dennett, D.C.: Darwin’s “strange inversion of reasoning”. PNAS 106(Suppl 1), 10061–10065 (2009)CrossRefGoogle Scholar
  10. Dennett, D.C.: Intuition Pumps and Other Tools for Thinking. Norton, New York (2013)Google Scholar
  11. Desmond, A., Moore, J.: Darwin. Warner, New York (1991)Google Scholar
  12. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)Google Scholar
  13. Gigerenzer, G.: From tools to theories: a heuristic of discovery in cognitive psychology. Psychol. Rev. 98, 254–267 (1991)CrossRefGoogle Scholar
  14. Gigerenzer, G.: Gut Feelings. Viking Penguin, New York (2007)Google Scholar
  15. Gigerenzer, G., Sturm, T.: Tools = theories = data? On some circular dynamics in cognitive science. In: Ash, M., Sturm, T. (eds.) Psychology’s Territories: Historical and Contemporary Perspectives from Different Disciplines. Lawrence Erlbaum, Mahwah, NJ (2007)Google Scholar
  16. Gigerenzer, G., Todd, P.M.: ABC Research Group: Simple Heuristics That Make Us Smart. Oxford University Press, Oxford (1999)Google Scholar
  17. Gigerenzer, G.: Rationality for Mortals. Oxford University Press, Oxford (2010)Google Scholar
  18. Gigerenzer, G., Hertwig, R., Pachur, T. (eds.): Heuristics: The Foundations of Adaptive Behavior. Oxford University Press, Oxford (2011)Google Scholar
  19. Gillies, D.: How Should Research Be Organised? College Publications, London (2008)Google Scholar
  20. Kahneman, D., Slovic, P., Tversky, A.: Judgment Under Uncertainty: Heuristics and Biases. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  21. Klein, G.: Sources of Power: How People Make Decisions. MIT Press, Cambridge, MA (1999)Google Scholar
  22. Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago (1962)Google Scholar
  23. Kuhn, T.S.: Postscript-1969. Addition to the Second Edition, of Kuhn (1962). University of Chicago Press, Chicago (1970a)Google Scholar
  24. Kuhn, T.S.: Logic of discovery or psychology of research? In: Lakatos, I., Musgrave, A. (eds.), Criticism and the Growth of Knowledge, pp. 1–23. Cambridge University Press, Cambridge (1970b)Google Scholar
  25. Langley, P., Simon, H.A., Bradshaw, G., Zytkow, J.: Scientific Discovery: Computational Explorations of the Creative Processes. MIT Press, Cambridge, MA (1987)Google Scholar
  26. Lenat, D.: The ubiquity of discovery. Artif. Intell. 9, 257–285 (1978)CrossRefGoogle Scholar
  27. Levins, R.: The Strategy of Model Building in Population Biology. Am. Sci. 54(4), 421–431 (1966)Google Scholar
  28. Meehl, P.E.: Clinical versus Statistical Prediction. University of Minnesota Press, Minneapolis (1954)Google Scholar
  29. Miller, A.: Inconsistent Reasoning toward Consistent Theories. In: Meheus, J. (ed.) Inconsistency in Science, pp. 35–41. Kluwer Academic Publishers, Dordrecht, NL (2002)CrossRefGoogle Scholar
  30. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ (1972)Google Scholar
  31. Nickles, T.: Evolutionary Models of Innovation and the Meno Problem. In: Shavinina, L. (ed.) International Handbook on Innovation, pp. 54–78. Elsevier Scientific Publications, Amsterdam (2003)CrossRefGoogle Scholar
  32. Nickles, T.: Heuristic Appraisal: Context of Discovery or Justification? In: Schickore, J., Steinle, F. (eds.) Revisiting Discovery and Justification: Historical and Philosophical Perspectives on the Context Distinction, pp. 159–182. Springer, Dordrecht (2006)CrossRefGoogle Scholar
  33. Nickles, T.: Heuristic Appraisal at the Frontier of Research. In: Ippoliti, E. (ed.) Heuristic Reasoning, pp. 57–87. Springer, Dordrecht (2015)Google Scholar
  34. Nickles, T.: The Crowbar Model of Method: Reflections on the Tools-to-Theories Heuristic (draft-2015)Google Scholar
  35. Nickles, T.: Prospective versus retrospective points of view in theory of inquiry: toward a Quasi-Kuhnian history of the future. In Beaney, M., et al. (eds.), Aspect Perception after Wittgenstein: Seeing-As and Novelty. Routledge, London (in press)Google Scholar
  36. Norman, D.: Things that Make Us Smart: Defending Human Attributes in the Age of the Machine. Addison-Wesley, Boston (1993)Google Scholar
  37. Popper, K.R.: Objective Knowledge: An Evolutionary Approach. Clarendon Press, Oxford (1972)Google Scholar
  38. Pretz, J.E., Naples, A.J., Sternberg, R.J.: Recognizing, defining, and representing problems. In: Davidson, J.E., Sternberg, R.J. (eds.) The Psychology of Problem Solving, pp. 3–30. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  39. Rorty, R.: Contingency, Irony, and Solidarity. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  40. Schooler, L.J., Hertwig, R.: How forgetting aids heuristic decisions. Psychol. Rev. 112, 610–628 (2005)CrossRefGoogle Scholar
  41. Simon, H.A.: Administrative Behavior. Macmillan, New York (1945)Google Scholar
  42. Simon, H.A.: Models of Discovery. Reidel, Dordrecht (1977)CrossRefGoogle Scholar
  43. Simon, H.A.: What is an explanation of behavior? Psychol. Sci. 3, 150–161 (1992)CrossRefGoogle Scholar
  44. Stanley, J.: Know How. Oxford University Press, Oxford (2011)CrossRefGoogle Scholar
  45. Thagard, P.: Rationality and science. In: Mele, A., Rawling, P. (eds.) The Oxford Handbook of Rationality, pp. 373–379. Oxford University Press, Oxford (2004)Google Scholar
  46. Thagard, P.: Hot Thought. MIT Press, Cambridge, MA (2008)Google Scholar
  47. Todd, P.M., Gigerenzer, G.: Précis of Simple Heuristics that Make Us Smart. Behav. Brain. Sci. 23(5), 727–741 (2000)Google Scholar
  48. Trout, J.D.: Why Empathy Matters: The Science and Psychology of Better Judgment. Penguin, New York (2009)Google Scholar
  49. Vredeveldt, A., Hitch, G.J., Baddeley, A.D.: Eye closure helps memory by reducing cognitive load and enhancing visualisation. Mem. Cognit. 39(7), 1253–1263 (2011)CrossRefGoogle Scholar
  50. Wimsatt, W.C.: Reductionistic research strategies and their biases in the units of selection controversy. In: Nickles, T. (ed.) Scientific Discovery: Case Studies, pp. 213–259. Reidel, Dordrecht (1980)CrossRefGoogle Scholar
  51. Wimsatt, W.C.: Re-Engineering Philosophy for Limited Beings: Piecewise Approximations to Reality. Harvard University Press, Cambridge, MA (2007)Google Scholar
  52. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)CrossRefGoogle Scholar
  53. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Search. Technical Report SFI-TR-95-02-010. Santa Fe Institute (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of NevadaRenoUSA

Personalised recommendations