Skip to main content

Cyclin D1 and E1

  • Chapter
  • First Online:
  • 885 Accesses

Abstract

Two proto-oncogenes from the Cyclin protein family that are involved in the regulation of the cell cycle are described in this chapter. Cyclin D1 gene or CCND1 is involved in the regulation of the cell cycle and becomes most abundant in the G1 phase in the lead up to DNA replication. The activity of the cyclin D in normal cell physiology contributes to controlled and healthy progression of the cell cycle. Cyclin E1 or CCNE1 is a positive regulator of CDK2 that regulates cell progression from G1 to S phase of the cell cycle. Cyclin E1 is necessary for positive regulation of the cell cycle. Abnormalities with expression of CCNE1 have been suggested as a prognostic tool in some malignancies. Growth promotion is closely regulated and under abnormal circumstances cell growth and sustained division in the absence of the initial induction signal can arise; this proliferation may be due to an oncogene. CCND1 plays several roles in the progression of cancer via its potential contribution to uncontrolled proliferation through its involvement in cell cycle regulation and the promotion of the process of Angiogenesis via its involvement in the regulation of the Vascular Endothelial Growth Factor (VEGF). Understanding the role of Cyclins and their subsequent role in cell division and e angiogenesis associated with malignancies allows for the development of targeted therapy and advances in future medicinal treatment options.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akli S, Keyomarsi K (2003) Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol Ther 2(4 Suppl 1):S38–S47

    CAS  PubMed  Google Scholar 

  • Akli S, Zheng PJ, Multani AS, Wingate HF, Pathak S, Zhang N, Tucker SL, Chang S, Keyomarsi K (2004) Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res 64(9):3198–3208

    Article  CAS  PubMed  Google Scholar 

  • Caldon CE, Musgrove EA (2010) Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div 5:2. doi:10.1186/1747-1028-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Eble JN (2012) Molecular surgical pathology. Springer Science and Business Media, New York

    Google Scholar 

  • Chow A (2010) Cell cycle control by oncogenes and tumor suppressors: driving the transformation of normal cells into cancerous cells. Nat Educ 3:7

    Google Scholar 

  • Cooper GM, Hausman RE (2000) The cell. Sinauer Associates, Sunderland

    Google Scholar 

  • Day PJ, Cleasby A, Tickle IJ, O’Reilly M, Coyle JE, Holding FP, McMenamin RL, Yon J, Chopra R, Lengauer C, Jhoti H (2009) Crystal structure of human CDK4 in complex with a D-type cyclin. Proc Natl Acad Sci U S A 106(11):4166–4170. doi:10.1073/pnas.0809645106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etemadmoghadam D, George J, Cowin PA, Cullinane C, Kansara M, Gorringe KL, Smyth GK, Bowtell DD (2010) Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer. PLoS One 5(11):e15498. doi:10.1371/journal.pone.0015498

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewen ME, Lamb J (2004) The activities of cyclin D1 that drive tumorigenesis. Trends Mol Med 10(4):158–162. doi:10.1016/j.molmed.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  • Figg W, Folkman J (2008) Angiogenesis: an integrative approach from science to medicine. Springer, New York

    Book  Google Scholar 

  • Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (2004) Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145(12):5439–5447. doi:10.1210/en.2004-0959

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Matsushime H, Valentine M, Roussel MF, Sherr CJ, Look AT (1992) Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. Genomics 13(3):565–574

    Article  CAS  PubMed  Google Scholar 

  • Josefsberg Ben-Yehoshua L, Beider K, Shimoni A, Ostrovsky O, Samookh M, Peled A, Nagler A (2012) Characterization of cyclin E expression in multiple myeloma and its functional role in seliciclib-induced apoptotic cell death. PLoS One 7(4):e33856. doi:10.1371/journal.pone.0033856

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruger EA, Figg WD (2000) TNP-470: an angiogenesis inhibitor in clinical development for cancer. Expert Opin Investig Drugs 9(6):1383–1396. doi:10.1517/13543784.9.6.1383

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. doi:10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Nakayama N, Jinawath N, Salani R, Kurman RJ, Shih Ie M, Wang TL (2007) Amplicon profiles in ovarian serous carcinomas. Int J Cancer J Int du Cancer 120(12):2613–2617. doi:10.1002/ijc.22609

    Article  CAS  Google Scholar 

  • Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF (2014) Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife 3:e02872. doi:10.7554/eLife.02872

  • Pestell RG, Li Z (2006) Antisense to cyclin D1 inhibits VEGF-stimulated growth of vascular endothelial cells: implication of tumor vascularization. Clin Cancer Res Off J Am Assoc Cancer Res 12(15):4459–4462. doi:10.1158/1078-0432.ccr-06-0614

    Article  CAS  Google Scholar 

  • Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol Off J Am Soc Clin Oncol 24(11):1770–1783. doi:10.1200/jco.2005.03.7689

    Article  CAS  Google Scholar 

  • Sluyser M (2005) Application of apoptosis to cancer treatment. Springer Science and Business Media, New York

    Google Scholar 

  • Wang F, Fu XD, Zhou Y, Zhang Y (2009) Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells. BMB Rep 42(11):725–730

    Article  CAS  PubMed  Google Scholar 

  • Yasui M, Yamamoto H, Ngan CY, Damdinsuren B, Sugita Y, Fukunaga H, Gu J, Maeda M, Takemasa I, Ikeda M, Fujio Y, Sekimoto M, Matsuura N, Weinstein IB, Monden M (2006) Antisense to cyclin D1 inhibits vascular endothelial growth factor-stimulated growth of vascular endothelial cells: implication of tumor vascularization. Clin Cancer Res Off J Am Assoc Cancer Res 12(15):4720–4729. doi:10.1158/1078-0432.ccr-05-1213

    Article  CAS  Google Scholar 

  • Yu D, Hung M-C (2009) Breast cancer chemosensitivity, vol 608. Springer Science and Business Media, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salajegheh, A. (2016). Cyclin D1 and E1. In: Angiogenesis in Health, Disease and Malignancy. Springer, Cham. https://doi.org/10.1007/978-3-319-28140-7_7

Download citation

Publish with us

Policies and ethics