Skip to main content

Low-Noise and Low-Offset Operational and Instrumentation Amplifiers

  • Chapter
  • First Online:
Operational Amplifiers
  • 4327 Accesses

Abstract

This chapter gives an overview of techniques that achieve low offset, low noise, and high accuracy in CMOS operational amplifiers (OA or OpAmp) and instrumentation amplifiers (IA or InstAmp). Auto-zero and chopper techniques are used apart and in combination with each other. Frequency-compensation techniques are described that obtain straight roll-off amplitude characteristics in the multi-path architectures of chopper-stabilized amplifiers. Therefore, these amplifiers can be used in standard feedback networks. Offset voltages lower than 1 μV can be achieved. Instrumentation amplifiers with capacitive coupled chopper inputs are described. They facilitate CM input voltage ranges outside the supply voltages for applications of beyond the rail current sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Huijsing, Operational Amplifiers, Theory and Design (Chapter 1) (Kluwer Academic Publishers, Dordrecht, 2001), p. 456

    Book  Google Scholar 

  2. J. Huijsing, Operational Amplifiers, Theory and Design (Chapter 3) (Kluwer Academic Publishers, Dordrecht, 2001), p. 456

    Book  Google Scholar 

  3. B. van den Dool, J. Huijsing, Indirect current feedback instrumentation amplifier with a common-mode input range that includes the negative rail. IEEE J Solid-St Circ 28(7), 743–749 (1993)

    Article  Google Scholar 

  4. J. Huijsing, Operational Amplifiers, Theory and Design (Chapter 9) (Kluwer Academic Publishers, Dordrecht, 2001), p. 456

    Book  Google Scholar 

  5. I.E. Opris, G.T.A. Kovacs, A rail-to-rail ping-pong OpAmp. IEEE J Solid-St Circ 31(9), 1320–1324 (1996)

    Article  Google Scholar 

  6. C. Enz, E. Vittoz, F. Krummenacher, A CMOS chopper amplifier. IEEE J Solid-St Circ 22(3), 708–715 (1987)

    Article  Google Scholar 

  7. A. Bakker, K. Thiele, J. Huijsing, A CMOS nested chopper instrumentation amplifier with 100 nV offset. IEEE J Solid-St Circ 35(12), 1877–1883 (2000)

    Article  Google Scholar 

  8. A. Tang, Ping-pong amplifier with auto-zeroing and chopping, U.S. Patent 6,476,671, 11 May 2002. Analog Devices

    Google Scholar 

  9. C. Enz, G. Temes, Circuit techniques for reducing the effect of OpAmp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  10. J. Huijsing, J. Fonderie, B. Shahi, Frequency stabilization of chopper-stabilized amplifiers, U.S. Patent 7,209,000, 24 April 2007

    Google Scholar 

  11. J.F. Witte, K. Makinwa, J. Huijsing, A CMOS Chopper offset-stabilized OpAmp, 2006, in European solid–state circuits conference, proceedings, pp. 360–363

    Google Scholar 

  12. R. Burt, J. Zhang, A micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path. IEEE J Solid-St Circ 41(12), 2729–2736 (2006)

    Article  Google Scholar 

  13. J.F. Witte, J. Huijsing, K. Makinwa, A current feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current sensing. IEEE solid–state circuits conference 2008, San Francisco, Session 3.5, 4–6 Feb 2008

    Google Scholar 

  14. J. Huijsing, J. Fonderie, Chopper Chopper-stabilized operational amplifiers and methods, U.S. Patent 6,734,723, 11 May 2004

    Google Scholar 

  15. J. Huijsing, B. Shahi, Chopper Chopper-stabilized instrumentation and operational amplifiers, U.S. Patent 7,132,883, 7 Nov 2006

    Google Scholar 

  16. J.F. Witte, K.K.A. Makinwa, J.H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers (Springer, Dordrecht, 2009)

    Book  Google Scholar 

  17. R. Wu, K.A.A. Makinwa, J.H. Huijsing, A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop. IEEE solid-state circuits conference 2009 8–12 Feb 2009, pp. 322–323, 323a

    Google Scholar 

  18. J.H. Huijsing, B. Shahi, Accurate voltage to current converters for rail-sensing current-feedback instrumentation amplifiers, U.S. Patent 7,202,738, 10 April 2007

    Google Scholar 

  19. T. Denisson et al., A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J Solid-St Circ 42(12), 2934–2945 (2007)

    Article  Google Scholar 

  20. Q. Fan et al., A 21 nV/√Hz (10.5 nV/√Hz) chopper-stabilized multi-path current-feedback instrumentation (operational) amplifier with 2 μV offset. IEEE solid–state circuits conference 2010, San Francisco, 8–11 Feb 2010

    Google Scholar 

  21. R. Wu, J.H. Huijsing, K.A.A. Makinwa, A current-feedback instrumentation amplifier with a Gain-Error Reduction Loop (GERL) achieving 0.05 % gain accuracy and 1 ppm/degree C gain drift. IEEE solid-state circuits conference 2011, San Francisco, Feb 20–23, 13.5

    Google Scholar 

  22. R.E. Boucher, J.H. Huijsing, Auto-gain correction and common mode voltage cancellation in a precision amplifier, U.S. Patent 7,696,817B1, 7 April 2010

    Google Scholar 

  23. Q. Fan, J.H. Huijsing, A capacitively coupled chopper instrumentation amplifier with a ±30 V common-mode range, 160 dB CMRR and 5 μV offset. 2010 I.E. solid–state circuits conference, San Francisco, 19–23 Feb. 2012

    Google Scholar 

  24. J.H. Huijsing, Q. Fan et al., Fast-settling capacitive coupled amplifiers. US Patent 9,294,049, March 22, 2016

    Google Scholar 

  25. J.H. Huijsing, Q. Fan et al., Fully capacitive coupled input choppers. US Patent 9,143,092, September 22, 2015

    Google Scholar 

  26. Long Xu, et al., A 110 dB SNR ADC with ±30 V input common-mode range and 8 μV offset for current sensing applications. 2015 I.E. international solid-state circuits conference, San Francisco, 22–26 Feb 2015

    Google Scholar 

  27. J.H. Huijsing, Dynamic offset cancellation in operational amplifiers and instrumentation amplifiers, in Analog Circuit Design, ed. by M. Steyaert et al. (Springer, New York, NY, 2009), pp. 99–123

    Chapter  Google Scholar 

  28. Q. Fan, et al., Capacitively-Coupled Chopper Amplifiers, Book, to be published by Springer Science+Business Media B.V. 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huijsing, J. (2017). Low-Noise and Low-Offset Operational and Instrumentation Amplifiers. In: Operational Amplifiers. Springer, Cham. https://doi.org/10.1007/978-3-319-28127-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28127-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28126-1

  • Online ISBN: 978-3-319-28127-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics