Skip to main content

An Institutional Foundation for the \(\mathbb {K}\) Semantic Framework

  • Conference paper
  • First Online:
Recent Trends in Algebraic Development Techniques (WADT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9463))

Included in the following conference series:


We advance an institutional formalisation of the logical systems that underlie the \(\mathbb {K}\) semantic framework and are used to capture both structural properties of program configurations through pattern matching, and changes of configurations through reachability rules. By defining encodings of matching and reachability logic into the institution of first-order logic, we set the foundation for integrating \(\mathbb {K}\) into logic graphs of heterogeneous institution-based specification languages such as \(\textsc {HetCasl}\). This will further enable the use of the \(\mathbb {K}\) tool with other existing formal specification and verification tools associated with Hets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions


  1. 1.

    For simplicity, the formalism we used in this paper does not take into account the subsorting relation. We could further include subsorts following ideas developed for order-sorted equational logic [11].

  2. 2.

    Pgm is the sort defined in Listing 1.1 for capturing the syntax of an IMP program.

  3. 3.

    Technically, the quantification in \(\underline{\mathrm {ML}}^{+}\) is done only over variables that are interpreted in a deterministic manner. This means that every extension with variables over signature \(\mathrm {U}(\varSigma )\) (in \(\underline{\mathrm {ML}}\)) corresponds to a deterministic extension of \(\varSigma \) in \(\underline{\mathrm {ML}}^{+}\).

  4. 4.

    We recall from the definitions of the institutions of matching and first-order logic that from a technical point of view, variables are triples, consisting of name, sort, and signature over which they are defined. Consequently, the signature morphism \(\xi _\varSigma \) maps \( \langle x,t,\varSigma \rangle \) to \( \langle x,t,\varPhi (\varSigma ) \uplus \langle m,s,\varPhi (\varSigma ) \rangle \rangle \), and \( \langle m, s, \varPhi (\varSigma \uplus x) \rangle \) to \( \langle m,s,\varPhi (\varSigma ) \rangle \).

  5. 5.

    Note that, in this case, \(\mathrm {FOL}^{m \,\mathord {:}\,{s}}_{\varSigma }(\pi )\) is just a notation, and it should not be confused with the first-order sentence described in the previous section, for which we would need to instantiate \(\underline{M}\) with \(\underline{\mathrm {ML}}^{+}\).


  1. The IMP language.

  2. Aiguier, M., Diaconescu, R.: Stratified institutions and elementary homomorphisms. Inf. Process. Lett. 103(1), 5–13 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bogdănaş, D., Roşu, G.: K-Java: a complete semantics of Java. In: Proceedings of the 42nd Symposium on Principles of Programming Languages, POPL 2015. ACM (2015)

    Google Scholar 

  4. Borzyszkowski, T.: Logical systems for structured specifications. Theor. Comput. Sci. 286(2), 197–245 (2002)

    Article  MathSciNet  Google Scholar 

  5. Chiriţă, C.E.: An institutional foundation for the K semantic framework. Master’s thesis, University of Bucharest (2014)

    Google Scholar 

  6. Şerbănuţă, T.F., Arusoaie, A., Lazar, D., Ellison, C., Lucanu, D., Roşu, G.: The K primer (version 3.3). Electron. Notes Theor. Comput. Sci. 304, 57–80 (2014)

    Article  MathSciNet  Google Scholar 

  7. Diaconescu, R.: Institution-independent Model Theory. Studies in Universal Logic. Springer, London (2008).

    MATH  Google Scholar 

  8. Diaconescu, R.: Quasi-boolean encodings and conditionals in algebraic specification. J. Logic Algebraic Program. 79(2), 174–188 (2010)

    Article  MathSciNet  Google Scholar 

  9. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In: Proceedings of the 39th Symposium on Principles of Programming Languages (POPL 2012), pp. 533–544. ACM (2012)

    Google Scholar 

  10. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)

    Article  MathSciNet  Google Scholar 

  11. Goguen, J.A., Diaconescu, R.: An Oxford survey of order sorted algebra. Math. Struct. Comput. Sci. 4(3), 363–392 (1994)

    Article  MathSciNet  Google Scholar 

  12. Guth, D.: A formal semantics of python 3.3. Master’s thesis, University of Illinois at Urbana-Champaign, July 2013

    Google Scholar 

  13. Lamo, Y.: The Institution of Multialgebras-a general framework for algebraic software development. Ph.D. thesis, University of Bergen (2003)

    Google Scholar 

  14. Lane, S.M.: Categories for the Working Mathematician. Springer, New York (1998).

    MATH  Google Scholar 

  15. Meseguer, J.: General logics. In: Ebbinghaus, H.D., Fernandez-Prida, J., Garrido, M., Lascar, D., Artalejo, M.R. (eds.) Logic Colloquium 1987 Proceedings of the Colloquium held in Granada, Studies in Logic and the Foundations of Mathematics, vol. 129, pp. 275–329. Elsevier (1989)

    Google Scholar 

  16. Mossakowski, T.: HetCasl-heterogeneous specification. Language summary (2004)

    Google Scholar 

  17. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Roşu, G.: Matching logic: a logic for structural reasoning. Technical report, University of Illinois, January 2014.,

  19. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Log. Algebraic Program. 79(6), 397–434 (2010)

    Article  MathSciNet  Google Scholar 

  20. Roşu, G., Şerbănuţă, T.F.: K overview and SIMPLE case study. Electron. Notes Theoret. Comput. Sci. 304, 3–56 (2014)

    Article  MathSciNet  Google Scholar 

  21. Roşu, G., Ştefănescu, A., Ciobâcă, Ş., Moore, B.M.: One-path reachability logic. In: Proceedings of the 28th Symposium on Logic in Computer Science (LICS 2013), pp. 358–367. IEEE, June 2013

    Google Scholar 

  22. Salibra, A., Scollo, G.: Interpolation and compactness in categories of pre-institutions. Math. Struct. Comput. Sci. 6(3), 261–286 (1996)

    Article  MathSciNet  Google Scholar 

  23. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Monographs in Theoretical Computer Science. Springer, Heidelberg (2012)

    Book  Google Scholar 

  24. Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Claudia Elena Chiriţă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chiriţă, C.E., Şerbănuţă, T.F. (2015). An Institutional Foundation for the \(\mathbb {K}\) Semantic Framework. In: Codescu, M., Diaconescu, R., Țuțu, I. (eds) Recent Trends in Algebraic Development Techniques. WADT 2015. Lecture Notes in Computer Science(), vol 9463. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28113-1

  • Online ISBN: 978-3-319-28114-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics