An Institutional Foundation for the \(\mathbb {K}\) Semantic Framework

  • Claudia Elena Chiriţă
  • Traian Florin Şerbănuţă
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9463)


We advance an institutional formalisation of the logical systems that underlie the \(\mathbb {K}\) semantic framework and are used to capture both structural properties of program configurations through pattern matching, and changes of configurations through reachability rules. By defining encodings of matching and reachability logic into the institution of first-order logic, we set the foundation for integrating \(\mathbb {K}\) into logic graphs of heterogeneous institution-based specification languages such as \(\textsc {HetCasl}\). This will further enable the use of the \(\mathbb {K}\) tool with other existing formal specification and verification tools associated with Hets.


  1. 1.
  2. 2.
    Aiguier, M., Diaconescu, R.: Stratified institutions and elementary homomorphisms. Inf. Process. Lett. 103(1), 5–13 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bogdănaş, D., Roşu, G.: K-Java: a complete semantics of Java. In: Proceedings of the 42nd Symposium on Principles of Programming Languages, POPL 2015. ACM (2015)Google Scholar
  4. 4.
    Borzyszkowski, T.: Logical systems for structured specifications. Theor. Comput. Sci. 286(2), 197–245 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chiriţă, C.E.: An institutional foundation for the K semantic framework. Master’s thesis, University of Bucharest (2014)Google Scholar
  6. 6.
    Şerbănuţă, T.F., Arusoaie, A., Lazar, D., Ellison, C., Lucanu, D., Roşu, G.: The K primer (version 3.3). Electron. Notes Theor. Comput. Sci. 304, 57–80 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Diaconescu, R.: Institution-independent Model Theory. Studies in Universal Logic. Springer, London (2008). Scholar
  8. 8.
    Diaconescu, R.: Quasi-boolean encodings and conditionals in algebraic specification. J. Logic Algebraic Program. 79(2), 174–188 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In: Proceedings of the 39th Symposium on Principles of Programming Languages (POPL 2012), pp. 533–544. ACM (2012)Google Scholar
  10. 10.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goguen, J.A., Diaconescu, R.: An Oxford survey of order sorted algebra. Math. Struct. Comput. Sci. 4(3), 363–392 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Guth, D.: A formal semantics of python 3.3. Master’s thesis, University of Illinois at Urbana-Champaign, July 2013Google Scholar
  13. 13.
    Lamo, Y.: The Institution of Multialgebras-a general framework for algebraic software development. Ph.D. thesis, University of Bergen (2003)Google Scholar
  14. 14.
    Lane, S.M.: Categories for the Working Mathematician. Springer, New York (1998). Scholar
  15. 15.
    Meseguer, J.: General logics. In: Ebbinghaus, H.D., Fernandez-Prida, J., Garrido, M., Lascar, D., Artalejo, M.R. (eds.) Logic Colloquium 1987 Proceedings of the Colloquium held in Granada, Studies in Logic and the Foundations of Mathematics, vol. 129, pp. 275–329. Elsevier (1989)Google Scholar
  16. 16.
    Mossakowski, T.: HetCasl-heterogeneous specification. Language summary (2004)Google Scholar
  17. 17.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  18. 18.
    Roşu, G.: Matching logic: a logic for structural reasoning. Technical report, University of Illinois, January 2014.,
  19. 19.
    Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Log. Algebraic Program. 79(6), 397–434 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Roşu, G., Şerbănuţă, T.F.: K overview and SIMPLE case study. Electron. Notes Theoret. Comput. Sci. 304, 3–56 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Roşu, G., Ştefănescu, A., Ciobâcă, Ş., Moore, B.M.: One-path reachability logic. In: Proceedings of the 28th Symposium on Logic in Computer Science (LICS 2013), pp. 358–367. IEEE, June 2013Google Scholar
  22. 22.
    Salibra, A., Scollo, G.: Interpolation and compactness in categories of pre-institutions. Math. Struct. Comput. Sci. 6(3), 261–286 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Monographs in Theoretical Computer Science. Springer, Heidelberg (2012) CrossRefzbMATHGoogle Scholar
  24. 24.
    Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Claudia Elena Chiriţă
    • 1
  • Traian Florin Şerbănuţă
    • 2
  1. 1.Department of Computer ScienceRoyal Holloway University of LondonEghamUK
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations