Skip to main content

The Intestinal Polyposes: Clinical and Molecular Overview

  • Chapter
  • First Online:
Intestinal Polyposis Syndromes

Abstract

Intestinal polyposis syndromes are characterized by the development of multiple polyps throughout the colorectum and the GI tract. They can be differentiated based on clinical characteristics, including age at onset, type, number, and histology of polyps, extraintestinal manifestations, and pattern of familial recurrence. However, there is phenotypic overlap among the different forms, and clinical examination may not be sufficient to obtain a diagnosis.

Most polyposes have a genetic basis, and the number of genes that are known to be involved in these conditions is growing. There are now eight types of polyposis, due to ten different genes, which can be distinguished based on the combination of clinical characteristics and underlying molecular mechanisms.

The identification of the genetic defects underlying intestinal polyposes has been greatly facilitated by the advent of high-throughput sequencing technologies, which allow simultaneous analyses of multiple genes in a faster and less expensive way than conventional methods. Genetic diagnosis is therefore moving to the forefront of the clinical work up of polyposis patients and their families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menzel D. De excrescentiis verrucoso cristosis copiose in intestinis crassis dysenteriam passi observatis. Acta Med Berol. 1721;68–71.

    Google Scholar 

  2. Sklifasowski NW. Polyadenoma tractus intestinalis. Vrac. 1881;4:55–7.

    Google Scholar 

  3. Cripps WH. Two cases of disseminated polypus of the rectum. Trans Path Soc London. 1882;33:165–8.

    Google Scholar 

  4. Smith T. Three cases of multiple polypi of the lower bowel occurring in one family. St Bartholomew’s Hosp Rep. 1887;23:225–9.

    Google Scholar 

  5. Bickersteth RA. Multiple polypi of the rectum occurring in a mother and child. St Bartholomew’s Hosp Rep. 1890;26:299–301.

    Google Scholar 

  6. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat Genet. 2002;30:227–32.

    Article  CAS  PubMed  Google Scholar 

  7. Lucci-Cordisco E, Risio M, Venesio T, Genuardi M. The growing complexity of intestinal polyposis syndromes. Am J Med Genet A. 2013;161A:2777–87. doi:10.1002/ajmg.a.36253.

    Article  PubMed  Google Scholar 

  8. Snover DC. Serrated polyps of the large intestine. Semin Diagn Pathol. 2005;22:301–8.

    Article  PubMed  Google Scholar 

  9. Torlakovic EE, Gomez JD, Driman DK, Parfitt JR, Wang C, Benerjee T, Snover DC. Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA). Am J Surg Pathol. 2008;32:21–9.

    Article  PubMed  Google Scholar 

  10. Lanza G, Messerini L, Gafà R, Risio M. Colorectal tumors: the histology report. Dig Liver Dis. 2011;43 Suppl 4:S344–55. doi:10.1016/S1590-8658(11)60590-2.

    Article  PubMed  Google Scholar 

  11. Jass JR. Colorectal polyposis: from phenotype to diagnosis. Pathol Res Pract. 2008;204:431–47.

    Article  PubMed  Google Scholar 

  12. Matsumoto T, Iida M, Kobori Y, Mizuno M, Nakamura S, Hizawa K, Yao T. Serrated adenoma in familial adenomatous polyposis: relation to germline APC gene mutation. Gut. 2002;50:402–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cruz-Correa M, Giardiello FM. Familial adenomatous polyposis. Gastrointest Endosc. 2003;58:885–94.

    Article  PubMed  Google Scholar 

  14. Friedl W, Aretz S. Familial adenomatous polyposis: experience from a study of 1164 unrelated German polyposis patients. Hered Cancer Clin Pract. 2005;3:95–114. doi:10.1186/1897-4287-3-3-95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  16. Lamlum H, Ilyas M, Rowan A, Clark S, Johnson V, Bell J, et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s ‘two-hit’ hypothesis. Nat Med. 1999;5:1071–5.

    Article  CAS  PubMed  Google Scholar 

  17. Segditsas S, Rowan AJ, Howarth K, Jones A, Leedham S, Wright NA, et al. APC and the three-hit hypothesis. Oncogene. 2009;28:146–55. doi:10.1038/onc.2008.361.

    Article  CAS  PubMed  Google Scholar 

  18. Kim K-M, Calabrese P, Tavare S, Shibata D. Enhanced stem cell survival in familial adenomatous polyposis. Am J Pathol. 2004;164:1369–77.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang J, El-Masry N, Talbot I, Tomlinson I, Alison MR, El-Bahrawy M. Expression profiling of proliferation and apoptotic markers along the Adenoma-Carcinoma sequence in familial adenomatous polyposis patients. Gastroenterol Res Pract. 2013;2013:107534. doi:10.1155/2013/107534.

    PubMed  PubMed Central  Google Scholar 

  20. Fodde R, Tomlinson I. Nuclear beta-catenin expression and Wnt signalling: in defence of the dogma. J Pathol. 2010;221:239–41. doi:10.1002/path.2718.

    Article  PubMed  Google Scholar 

  21. Thirlwell C, Will OC, Domingo E, Graham TA, McDonald SA, Oukrif D, et al. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology. 2010;138:1441–54. doi:10.1053/j.gastro.2010.01.033.

    Article  CAS  PubMed  Google Scholar 

  22. Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 2007;19:150–8.

    Article  CAS  PubMed  Google Scholar 

  23. Janssen KP, Alberici P, Fsihi H, Gaspar C, Breukel C, Franken P, et al. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology. 2006;131:1096–109.

    Article  CAS  PubMed  Google Scholar 

  24. James RG, Conrad WH, Moon RT. Beta-catenin-independent Wnt pathways: signals, core proteins, and effectors. Methods Mol Biol. 2008;468:131–44. doi:10.1007/978-1-59745-249-6_10.

    Article  CAS  PubMed  Google Scholar 

  25. Phelps RA, Chidester S, Dehghanizadeh S, Phelps J, Sandoval IT, Rai K, et al. A two-step model for colon adenoma initiation and progression caused by APC loss. Cell. 2009;137:623–34. doi:10.1016/j.cell.2009.02.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Obrador-Hevia A, Chin SF, González S, Rees J, Vilardell F, Greenson JK, et al. Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas. J Pathol. 2010;221:57–67. doi:10.1002/path.2685.

    Article  CAS  PubMed  Google Scholar 

  27. Luo F, Poulogiannis G, Ye H, Hamoudi R, Arends MJ. Synergism between K-rasVal12 and mutant Apc accelerates murine large intestinal tumourigenesis. Oncol Rep. 2011;26:125–33. doi:10.3892/or.2011.1288.

    CAS  PubMed  Google Scholar 

  28. Bläker H, Scholten M, Sutter C, Otto HF, Penzel R. Somatic mutations in familial adenomatous polyps. Nuclear translocation of beta-catenin requires more than biallelic APC inactivation. Am J Clin Pathol. 2003;120:418–23.

    Article  PubMed  Google Scholar 

  29. Alberici P, de Pater E, Cardoso J, Bevelander M, Molenaar L, Jonkers J, Fodde R. Aneuploidy arises at early stages of Apc-driven intestinal tumorigenesis and pinpoints conserved chromosomal loci of allelic imbalance between mouse and human. Am J Pathol. 2007;170:377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lubbe SJ, Di Bernardo MC, Chandler IP, Houlston RS. Clinical implications of the colorectal cancer risk associated with MUTYH mutations. J Clin Oncol. 2009;27:3975–80. doi:10.1200/JCO.2008.21.6853.

    Article  CAS  PubMed  Google Scholar 

  31. Cleary SP, Cotterchio M, Jenkins MA, Kim H, Bristow R, Green R, et al. Germline MutY human homologue mutations and colorectal cancer: a multisite case-control study. Gastroenterology. 2009;136:1251–60. doi:10.1053/j.gastro.2008.12.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lipton L, Tomlinson I. The multiple colorectal adenoma phenotype and MYH, a base excision repair gene. Clin Gastroenterol Hepatol. 2004;2:633–8.

    Article  CAS  PubMed  Google Scholar 

  33. Chow E, Lipton L, Lynch E, D’Souza R, Aragona C, Hodgkin L, Brown G, Winship I, Barker M, Buchanan D, Cowie S, Nasioulas S, du Sart D, Young J, Leggett B, Jass J, Macrae F. Hyperplastic polyposis: phenotypic presentations and the role of MBD4 and MYH. Gastroenterology. 2006;131:30–9.

    Article  CAS  PubMed  Google Scholar 

  34. Boparai KS, Dekker E, Van Eeden S, Polak MM, Bartelsman JF, Mathus-Vliegen EM, et al. Hyperplastic polyps and sessile serrated adenomas as a phenotypic expression of MYH-associated polyposis. Gastroenterology. 2008;135:2014–8. doi:10.1053/j.gastro.2008.09.020.

    Article  CAS  PubMed  Google Scholar 

  35. Vogt S, Jones N, Christian D, Engel C, Nielsen M, Kaufman A, et al. Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology. 2009;137:1976–85. doi:10.1053/j.gastro.2009.08.052.

    Article  CAS  PubMed  Google Scholar 

  36. Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res. 2003;63:7595–9.

    CAS  PubMed  Google Scholar 

  37. Aretz S, Tricarico R, Papi L, Spier I, Pin E, Horpaopan S, et al. MUTYH-associated polyposis (MAP): evidence for the origin of the common European mutations p.Tyr179Cys and p.Gly396Asp by founder events. Eur J Hum Genet. 2014;22:923–9. doi:10.1038/ejhg.2012.309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones S, Lambert S, Williams GT, Best JM, Sampson JR, Cheadle JP. Increased frequency of the k-ras G12C mutation in MYH polyposis colorectal adenomas. Br J Cancer. 2004;90:1591–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Middeldorp A, van Puijenbroek M, Nielsen M, Corver WE, Jordanova ES, ter Haar N, et al. High frequency of copy-neutral LOH in MUTYH-associated polyposis carcinomas. J Pathol. 2008;216:25–31. doi:10.1002/path.2375.

    Article  CAS  PubMed  Google Scholar 

  40. de Miranda NF, Nielsen M, Pereira D, van Puijenbroek M, Vasen HF, Hes FJ, et al. MUTYH-associated polyposis carcinomas frequently lose HLA class I expression – a common event amongst DNA-repair-deficient colorectal cancers. J Pathol. 2009;219:69–76. doi:10.1002/path.2569.

    Article  PubMed  Google Scholar 

  41. Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, Sampson JR, Cheadle JP. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C⟶T:A mutations. Hum Mol Genet. 2002;11:2961–7.

    Article  CAS  PubMed  Google Scholar 

  42. Nieuwenhuis MH, Vogt S, Jones N, Nielsen M, Hes FJ, Sampson JR, et al. Evidence for accelerated colorectal adenoma--carcinoma progression in MUTYH-associated polyposis? Gut. 2012;61:734–8. doi:10.1136/gut.2010.229104.

    Article  CAS  PubMed  Google Scholar 

  43. Venesio T, Balsamo A, Errichiello E, Ranzani GN, Risio M. Oxidative DNA damage drives carcinogenesis in MUTYH-associated-polyposis by specific mutations of mitochondrial and MAPK genes. Mod Pathol. 2013;26:1371–81. doi:10.1038/modpathol.2013.66.

    Article  CAS  PubMed  Google Scholar 

  44. Weren RD, Ligtenberg MJ, Kets CM, de Voer RM, Verwiel ET, Spruijt L, et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat Genet. 2015;47:668–71. doi:10.1038/ng.3287.

    Article  CAS  PubMed  Google Scholar 

  45. Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013;45:136–44. doi:10.1038/ng.2503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bellido F, Pineda M, Aiza G, Valdés-Mas R, Navarro M, Puente DA, et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med. 2015. doi:10.1038/gim.2015.75.

    PubMed  Google Scholar 

  47. Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116:1453–6.

    Article  CAS  PubMed  Google Scholar 

  48. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7. doi:10.1038/nature11252.

    Article  Google Scholar 

  49. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4. doi:10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  50. Donehower LA, Creighton CJ, Schultz N, Shinbrot E, Chang K, Gunaratne PH, et al. MLH1-silenced and non-silenced subgroups of hypermutated colorectal carcinomas have distinct mutational landscapes. J Pathol. 2013;229:99–110. doi:10.1002/path.4087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Offerhaus GJA, Howe JR. Juvenile polyposis. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. World Health Organization classification of tumours of the digestive system. Lyon, France: IARC Press; 2010. p. 166–7.

    Google Scholar 

  52. Howe JR, Mitros FA, Summers RW. The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann Surg Oncol. 1998;5:751–6.

    Article  CAS  PubMed  Google Scholar 

  53. Aretz S, Stienen D, Uhlhaas S, Stolte M, Entius MM, Loff S, et al. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet. 2007;44:702–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Hattem WA, Brosens LA, de Leng WW, Morsink FH, Lens S, Carvalho R, et al. Large genomic deletions of SMAD4, BMPR1A and PTEN in juvenile polyposis. Gut. 2008;57:623–7. doi:10.1136/gut.2007.

    Article  PubMed  Google Scholar 

  55. Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ, Clevers H. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science. 2004;303:1684–6.

    Article  CAS  PubMed  Google Scholar 

  56. Langeveld D, van Hattem WA, de Leng WW, Morsink FH, Ten Kate FJ, Giardiello FM, et al. SMAD4 immunohistochemistry reflects genetic status in juvenile polyposis syndrome. Clin Cancer Res. 2010;16:4126–34. doi:10.1158/1078-0432.CCR-10-0168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McGarrity TJ, Kulin HE, Zaino RJ. Peutz-Jeghers syndrome. Am J Gastroenterol. 2000;95:596–604.

    Google Scholar 

  58. van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol. 2010;105:1258–64. doi:10.1038/ajg.2009.725.

    Article  PubMed  Google Scholar 

  59. Lin-Marq N, Borel C, Antonarakis SE. Peutz-Jeghers LKB1 mutants fail to activate GSK-3beta, preventing it from inhibiting Wnt signaling. Mol Genet Genomics. 2005;273:184–96.

    Article  CAS  PubMed  Google Scholar 

  60. Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22:183–98.

    Article  CAS  PubMed  Google Scholar 

  61. Stanich PP, Pilarski R, Rock J, Frankel WL, El-Dika S, Meyer MM. Colonic manifestations of the PTEN hamartoma tumor syndrome: case series and systematic review. World J Gastroenterol. 2014;20:1833–8. doi:10.3748/wjg.v20.i7.1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heald B, Mester J, Rybicki L, Orloff MS, Burke CA, Eng C. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139:1927–33. doi:10.1053/j.gastro.2010.06.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ponz de Leon M, Di Gregorio C, Giunti L, Roncucci L, Pedroni M, Tinca AC, et al. Duodenal carcinoma in a 37-year-old man with Cowden/Bannayan syndrome. Dig Liver Dis. 2013;45:75–8. doi: 10.1016/j.dld.2012.09.017.

    Google Scholar 

  64. Trufant JW, Greene L, Cook DL, McKinnon W, Greenblatt M, Bosenberg MW. Colonic ganglioneuromatous polyposis and metastatic adenocarcinoma in the setting of Cowden syndrome: a case report and literature review. Hum Pathol. 2012;43:601–4. doi:10.1016/j.humpath.2011.06.022.

    Article  PubMed  Google Scholar 

  65. Ngeow J, Heald B, Rybicki LA, Orloff MS, Chen JL, Liu X, et al. Prevalence of germline PTEN, BMPR1A, SMAD4, STK11, and ENG mutations in patients with moderate-load colorectal polyps. Gastroenterology. 2013;144:1402–9. doi:10.1053/j.gastro.2013.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ma L, Teruya-Feldstein J, Behrendt N, Chen Z, Noda T, Hino O, et al. Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev. 2005;19:1779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Berger AH, Pandolfi PP. Haplo-insufficiency: a driving force in cancer. J Pathol. 2011;223:137–46.

    Article  CAS  PubMed  Google Scholar 

  68. Marsh Durban V, Jansen M, Davies EJ, Morsink FH, Offerhaus GJ, Clarke AR. Epithelial-specific loss of PTEN results in colorectal juvenile polyp formation and invasive cancer. Am J Pathol. 2014;184:86–91. doi:10.1016/j.ajpath.2013.10.003.

    Article  CAS  PubMed  Google Scholar 

  69. Delnatte C, Sanlaville D, Mougenot JF, Vermeesch JR, Houdayer C, Blois MC, et al. Contiguous gene deletion within chromosome arm 10q is associated with juvenile polyposis of infancy, reflecting cooperation between the BMPR1A and PTEN tumor-suppressor genes. Am J Hum Genet. 2006;78:1066–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dahdaleh FS, Carr JC, Calva D, Howe JR. Juvenile polyposis and other intestinal polyposis syndromes with microdeletions of chromosome 10q22-23. Clin Genet. 2012;81:110–6. doi:10.1111/j.1399-0004.2011.01763.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Whitelaw SC, Murday VA, Tomlinson IPM, Thomas HJW, Cottrell S, Ginsberg A, et al. Clinical and molecular features of the hereditary mixed polyposis syndrome. Gastroenterology. 1997;112:327–34.

    Article  CAS  PubMed  Google Scholar 

  72. Jaeger E, Leedham S, Lewis A, Segditsas S, Becker M, Cuadrado PR, et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet. 2012;44:699–703. doi:10.1038/ng.2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Laitman Y, Jaeger E, Katz L, Tomlinson I, Friedman E. GREM1 germline mutation screening in Ashkenazi Jewish patients with familial colorectal cancer. Genet Res. 2015;97, e11. doi:10.1017/S0016672315000105.

    Article  Google Scholar 

  74. Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med. 2015;21:62–70. doi:10.1038/nm.3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cheah PY, Wong YH, Chau YP, Loi C, Lim KH, Lim JF, et al. Germline bone morphogenesis protein receptor 1A mutation causes colorectal tumorigenesis in hereditary mixed polyposis syndrome. Am J Gastroenterol. 2009;104:3027–33. doi:10.1038/ajg.2009.542.

    Article  CAS  PubMed  Google Scholar 

  76. O’Riordan JM, O’Donoghue D, Green A, Keegan D, Hawkes LA, Payne SJ, et al. Hereditary mixed polyposis syndrome due to a BMPR1A mutation. Colorectal Dis. 2010;12:570–3. doi:10.1111/j.1463-1318.2009.01931.x.

    Article  PubMed  Google Scholar 

  77. Jass JR, Whitehall VL, Young J, Leggett BA. Emerging concepts in colorectal neoplasia. Gastroenterology. 2002;123:862–76.

    Article  CAS  PubMed  Google Scholar 

  78. Young J, Jass JR. The case for a genetic predisposition to serrated neoplasia in the colorectum: hypothesis and review of the literature. Cancer Epidemiol Biomarkers Prev. 2006;15:1778–84.

    Article  CAS  PubMed  Google Scholar 

  79. Snover DC, Ahnen DJ, Burt RW, Odze RD. Serrated polyps of the colon and rectum and serrated polyposis. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. World Health Organization classification of tumours of the digestive system. Lyon, France: IARC Press; 2010. p. 160–5.

    Google Scholar 

  80. Boparai KS, Mathus-Vliegen EM, Koornstra JJ, Nagengast FM, van Leerdam M, van Noesel CJ, et al. Increased colorectal cancer risk during follow-up in patients with hyperplastic polyposis syndrome: a multicentre cohort study. Gut. 2010;59:1094–100. doi:10.1136/gut.2009.185884.

    Article  PubMed  Google Scholar 

  81. Hazewinkel Y, Reitsma JB, Nagengast FM, Vasen HF, van Os TA, van Leerdam ME, et al. Extracolonic cancer risk in patients with serrated polyposis syndrome and their first-degree relatives. Fam Cancer. 2013;12:669–73. doi:10.1007/s10689-013-9643-x.

    Article  PubMed  Google Scholar 

  82. Lage P, Cravo M, Sousa R, Chaves P, Salazar M, Fonseca R, et al. Management of Portuguese patients with hyperplastic polyposis and screening of at-risk first-degree relatives: a contribution for future guidelines based on a clinical study. Am J Gastroenterol. 2004;99:1779–84.

    Article  CAS  PubMed  Google Scholar 

  83. Rubio CA, Stemme S, Jaramillo E, Lindblom A. Hyperplastic polyposis coli syndrome and colorectal carcinoma. Endoscopy. 2006;38:266–70.

    Article  CAS  PubMed  Google Scholar 

  84. Carvajal-Carmona LG, Howarth KM, Lockett M, Polanco-Echeverry GM, Volikos E, Gorman M, et al. Molecular classification and genetic pathways in hyperplastic polyposis syndrome. J Pathol. 2007;212:378–85.

    Article  CAS  PubMed  Google Scholar 

  85. Kalady MF, Jarrar A, Leach B, LaGuardia L, O’Malley M, Eng C, Church JM. Defining phenotypes and cancer risk in hyperplastic polyposis syndrome. Dis Colon Rectum. 2011;54:164–70. doi:10.1007/DCR.0b013e3181fd4c15.

    Article  PubMed  Google Scholar 

  86. Carragher LA, Snell KR, Giblett SM, Aldridge VS, Patel B, Cook SJ, et al. V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol Med. 2010;2:458–71. doi:10.1002/emmm.201000099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Minoo P, Baker K, Goswami R, Chong G, Foulkes WD, Ruszkiewicz AR, et al. Extensive DNA methylation in normal colorectal mucosa in hyperplastic polyposis. Gut. 2006;55:1467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rosenberg DW, Yang S, Pleau DC, Greenspan EJ, Stevens RG, Rajan TV, et al. Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res. 2007;67:3551–4.

    Article  CAS  PubMed  Google Scholar 

  89. Guarinos C, Sánchez-Fortún C, Rodríguez-Soler M, Pérez-Carbonell L, Egoavil C, Juárez M, et al. Clinical subtypes and molecular characteristics of serrated polyposis syndrome. Clin Gastroenterol Hepatol. 2013;11:705–11. doi:10.1016/j.cgh.2012.12.045.

    Article  CAS  PubMed  Google Scholar 

  90. Rosty C, Parry S, Young JP. Serrated polyposis: an enigmatic model of colorectal cancer predisposition. Pathol Res Int. 2011;2011:157073. doi:10.4061/2011/157073.

    Article  Google Scholar 

  91. Li JH, Leong MY, Phua KB, Low Y, Kader A, Logarajah V, et al. Cap polyposis: further experience and review. World J Gastroenterol. 2013;119:4185–91. doi:10.3748/wjg.v19.i26.4185.

    Article  Google Scholar 

  92. Slavik T, Montgomery EA. Cronkhite–Canada syndrome six decades on: the many faces of an enigmatic disease. J Clin Pathol. 2014;67:891–7.

    Google Scholar 

  93. Seguí N, Mina LB, Lázaro C, Sanz-Pamplona R, Pons T, Navarro M, et al. Germline mutations in FAN1 cause hereditary colorectal cancer by impairing DNA repair. Gastroenterology. 2015. pii: S0016-5085(15)00783-0. doi:10.1053/j.gastro.2015.05.056.

    Google Scholar 

  94. Wong A, Ma BB. Personalizing therapy for colorectal cancer. Clin Gastroenterol Hepatol. 2014;12:139–44. doi: 10.1016/j.cgh.2013.08.040.

    Google Scholar 

  95. van Puijenbroek M, Nielsen M, Tops CM, Halfwerk H, Vasen HF, Weiss MM, et al. Identification of patients with (atypical) MUTYH-associated polyposis by KRAS2 c.34G>T prescreening followed by MUTYH hotspot analysis in formalin-fixed paraffin-embedded tissue. Clin Cancer Res. 2008;14:139–42. doi:10.1158/1078-0432.CCR-07-1705.

    Article  PubMed  Google Scholar 

  96. Lesko AC, Goss KH, Prosperi JR. Exploiting APC function as a novel cancer therapy. Curr Drug Targets. 2014;15(1):90–102.

    Article  CAS  PubMed  Google Scholar 

  97. Xie J, Bartels CM, Barton SW, Gu D. Targeting hedgehog signaling in cancer: research and clinical developments. Oncol Targets Ther. 2013;6:1425–35. doi:10.2147/OTT.S34678.

    Article  CAS  Google Scholar 

  98. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20. doi:10.1056/NEJMoa1500596.

    Article  CAS  PubMed  Google Scholar 

  99. Lord CJ, Tutt AN, Ashworth A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med. 2015;66:455–70. doi:10.1146/annurev-med-050913-022545.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Genuardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Venesio, T., Genuardi, M. (2016). The Intestinal Polyposes: Clinical and Molecular Overview. In: Boardman, L. (eds) Intestinal Polyposis Syndromes. Springer, Cham. https://doi.org/10.1007/978-3-319-28103-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28103-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28101-8

  • Online ISBN: 978-3-319-28103-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics