Biological Membranes

  • Gaspar BanfalviEmail author


Biological membranes (biomembranes) separate the interior of the cells from their external environment and cells from each other. Biomembranes are composed of lipid bilayers namely of two layers of amphipatic phospholipids with their hydrophobic tail regions turned inward and the polar head regions forming the intracellular (cytosolic) and extracellular (outer) faces of the bilayer. The selective permeability of biological membranes also referred to as semipermeability, partial permeability or differential permeability means that different molecules may diffuse, pass by passive and active or by other types of transport mediated by proteins. This chapter deals with basic properties of biological membranes describing different types of lipids that constitute the major components of membranes, characterizes cellular membranes of prokaryotic and eukaryotic cells, membranes of subcellular organelles and functions of biological membranes.


Amphipatic molecules Artificial membranes Bacterial membranes Caveolae Cell-cell interaction Cell surface markers Ceramide Chemiosmosis Cholesterol Cholesterol esters Cis-trans isomers Cytoskeletal elements Endomembrane systems Energy transduction Ether phospholipids Extracellular matrix Fatty acids Fluid mosaic membrane Focal adhesions Functions of membranes Galactocerebroside Glycerolipids Glycoshingolipids Inner and outer membranes Integrated proteins Invadosomes Lipid bilayer Lipid rafts Liposomes Selective permeability Membrane potential Membrane receptors Membrane transport Micelles Neutral fats Organellar membranes Plasmalemma Plasmalogens Plasma membrane Phosphoinositides Phospholipids Porins Postsynaptic densities Sphingomyelins Steroids Supramembrane structures Vesicular membranes 


  1. Abraham MR, Jahangir A, Alekseev AE, Terzic A (1999) Channelopathies of inwardly rectifying potassium channels. FASEB J 13:1901–1910PubMedGoogle Scholar
  2. Aitken A, Stanier RY (1979) Characterization of peptidoglycan from the cyanelles ofCyanophora paradox. J Gen Microbiol 112:219–223CrossRefGoogle Scholar
  3. Albergaria A, Ribeiro AS, Vieira AF, Sousa B, Nobre AR, Seruca R, Schmitt F, Paredes J (2011) P-cadherin role in normal breast development and cancer. Int J Dev Biol 55:811–822PubMedCrossRefGoogle Scholar
  4. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell, 2nd edn. Garland Publishing, New York, pp 312–313Google Scholar
  5. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York, pp 588–589Google Scholar
  6. Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L, Lee S, Brenmoehl J, Thomas S, Drevon CA, Erickson HP, Maak S (2015) Irisin – a myth rather than an exercise-inducible myokine. Sci Rep 5:8889PubMedCentralPubMedCrossRefGoogle Scholar
  7. Anchisi L, Dessi S, Pani A, Mandas A (2012) Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Frontiers 3:486Google Scholar
  8. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225PubMedCrossRefGoogle Scholar
  9. Anderson LL (2006) Discovery of the ‘porosome’; the universal secretory machinery in cells. J Cell Mol Med 10:126–131PubMedCentralPubMedCrossRefGoogle Scholar
  10. Appelqvist H, Waster P, Kagedal K, Ollinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5:214–226PubMedCrossRefGoogle Scholar
  11. Arbonés ML, Ord DC, Ley K, Ratech H, Maynard-Curry C, Otten G, Capon DJ, Tedder TF (1994) Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1:247–260PubMedCrossRefGoogle Scholar
  12. Awad AB, Downie A, Fink CS, Kim U (2000) Dietary phytosterol inhibits the growth and metastasis of MDA-MB-231 human breast cancer cells grown in SCID mice. Anticancer Res 20:821–824PubMedGoogle Scholar
  13. Awad AB, Fink CS, Williams H, Kim U (2001)In vitro andin vivo (SCID mice) effects of phytosterols on the growth and dissemination of human prostate cancer PC-3 cells. Eur J Cancer Prev 10:507–513PubMedCrossRefGoogle Scholar
  14. Banfalvi G (1991) Conservation of oxidative energy to reductive power int he citrate cycle. Biochem Educ 19:24–26CrossRefGoogle Scholar
  15. Banfalvi G (1992a) Conversion of oxidative energy to reductive power: II. Contribution of hydration to the reductive energy of the ß-oxidation of fatty acids. Biochem Educ 20:105–106CrossRefGoogle Scholar
  16. Banfalvi G (1992b) Conversion of oxidation energy to reductive power: III. Hydrolytic energy conservation in amino acid metabolism. Biochem Educ 20:216–218CrossRefGoogle Scholar
  17. Banfalvi G (2009) Apoptotic chromatin changes. Springer, Dordrecht, pp 1–30CrossRefGoogle Scholar
  18. Banfalvi G (2014) Homeostasis – tumor – metastasis. Springer, Dordrecht, p 28CrossRefGoogle Scholar
  19. Banfalvi G, Wiegant J, Sarkar N, van-Duijn P (1989) Immunofluorescent visualization of DNA replication sites within nuclei of Chinese hamster ovary cells. Histochemistry 93:81–86PubMedCrossRefGoogle Scholar
  20. Bangham AD (1975) Models of cell membranes. In: Weissman G, Clairborne R (eds) Cell membranes: biochemistry, cell biology and pathology. Hospital Practice, New York, pp 24–34Google Scholar
  21. Banyai E, Balogh E, Fagyas M, Arosio P, Hendrik Z, Kiraly G, Nagy G, Tánczos B, Pocsi I, Balla G, Balla J, Banfalvi G, Jeney V (2014) Novel functional changes during podocyte differentiation: increase of oxidative resistance and h-ferritin expression. Oxidative Med Cell Longev Article ID 976394, 11 pagesGoogle Scholar
  22. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253PubMedCrossRefGoogle Scholar
  23. Barlowe C (2003) Signals for COPII-dependent export from the ER: what’s the ticket out? Trends Cell Biol 13:295–300PubMedCrossRefGoogle Scholar
  24. Barraclough R, Rudland PS (1994) The S-100-related calcium-binding protein, p9Ka, and metastasis in rodent and human mammary cells. Eur J Cancer 30:1570–1576CrossRefGoogle Scholar
  25. Bast RC, Xu FJ, Yu YH, Barnhill S, Zhang Z, Mills GB (1998) CA 125: the past and the future. Int J Biol Markers 13:179–187PubMedGoogle Scholar
  26. Booth-Gauthier EA, Du V, Ghibaudo M, Rape AD, Dahl KN, Ladoux B (2013) Hutchinson–Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr Biol 5:569–577CrossRefGoogle Scholar
  27. Bradley TJ (2008) Membranes as sites of energy transduction. In: Bradley TJ (ed) Animal osmoregulation. Oxford Scholarship, New York, p 133CrossRefGoogle Scholar
  28. Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822:1442–1452PubMedCrossRefGoogle Scholar
  29. Brown WT (1992) Progeria: a human-disease model of accelerated aging. Am J Clin Nutr 55:1222S–1224SPubMedGoogle Scholar
  30. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96:11041–11048PubMedCentralPubMedCrossRefGoogle Scholar
  31. Brown DA, London E (1998) Function of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136PubMedCrossRefGoogle Scholar
  32. Burr GO, Burr MM, Miller E (1930) On the nature and role of the fatty acids essential in nutrition. J Biol Chem 86:587Google Scholar
  33. Calle Y, Carrager NO, Thrasher AJ, Jones GE (2006) Inhibition of calpain stabilises podosomes and impairs dendritic cell motility. J Cell Sci 119:2375–2385PubMedCrossRefGoogle Scholar
  34. Cavalier-Smith T (2006) Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc R Soc B 273:1943–1952PubMedCentralPubMedCrossRefGoogle Scholar
  35. Cecchini G (2003) Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72:77–109PubMedCrossRefGoogle Scholar
  36. Chan JKC, Ng CS, Hui PK (1988) A simple guide to the terminology and application of leucocyte monoclonal antibodies. Histopathology 12:461–480PubMedCrossRefGoogle Scholar
  37. Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13:1396–1402PubMedCrossRefGoogle Scholar
  38. Chiu GN, Bally MB, Mayer LD (2001) Selective protein interactions with phosphatidylserine containing liposomes alter the steric stabilization properties of poly(ethylene glycol). Biochim Biophys Acta 1510:56–69PubMedCrossRefGoogle Scholar
  39. Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 297:E977–E986PubMedCrossRefGoogle Scholar
  40. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:209–219PubMedCrossRefGoogle Scholar
  41. Cooper GM, Hausman RE (2013) Structure and organization of actin filaments. Chapter 12. The cytoskeleton and cell movement. In: The cell, a molecular approach, 6th edn. Sinauer Associates, Sunderland, pp 459–471Google Scholar
  42. Cowan AE, Moraru II, Schaff JC, Slepchenko BM, Loew LM (2012) Spatial modeling of cell signaling networks. Methods Cell Biol 110:195–221PubMedCentralPubMedCrossRefGoogle Scholar
  43. Dallai R (2005) Cell membrane specializations as revealed by freeze-fracture technique. In: Evangelista V, Barsanti V, Passarelli L, Gualtieri V (eds) From cells to proteins: imaging nature across dimensions. Springer, Dodrecht, pp 71–84, Printed in the NetherlandsCrossRefGoogle Scholar
  44. Danielli J, Davson H (1935) A contribution to the theory of permeability of thin films. J Cell Comp Physiol 5:495–508CrossRefGoogle Scholar
  45. Darnell J, Lodish H, Baltimore D (1986) Molecular cell biology. W.H. Freeman, New York, p 618Google Scholar
  46. de Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum–mitochondria relationship. EMBO J 29:2715–2723PubMedCentralPubMedCrossRefGoogle Scholar
  47. de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8:395–403PubMedCrossRefGoogle Scholar
  48. De Stefani E, Boffetta P, Ronco AL, Brennan P, Deneo-Pellegrini H, Carzoglio JC, Mendilaharsu M (2000) Plant sterols and risk of stomach cancer: a case-control study in Uruguay. Nutr Cancer 37:140–144PubMedCrossRefGoogle Scholar
  49. Derycke LD, Bracke ME (2004) N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol 48:463–476PubMedCrossRefGoogle Scholar
  50. Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W, Dagan T (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25:748–761PubMedCrossRefGoogle Scholar
  51. Divecha N, Irvine RF (1995) Phospholipid signaling. Cell 80:269–278PubMedCrossRefGoogle Scholar
  52. Divecha N, Banfi H, Irvine RF (1993) Inositides and the nucleus and inositides in the nucleus. Cell 74:405–407PubMedCrossRefGoogle Scholar
  53. Doherty GJ, McMahon HT (2008) Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu Rev Biophys 37:65–95PubMedCrossRefGoogle Scholar
  54. Dreikorn K (2002) The role of phytotherapy in treating lower urinary tract symptoms and benign prostatic hyperplasia. World J Urol 19:426–435PubMedCrossRefGoogle Scholar
  55. Dunham PB, Stewart GW, Ellory JC (1980) Chloride-activated passive potassium transport in human erythrocytes. Proc Natl Acad Sci U S A 77:1711–1715PubMedCentralPubMedCrossRefGoogle Scholar
  56. Duran JM, Kinseth M, Bossard C, Rose DW, Polishchuk R, Wu CC, Yates J, Zimmerman T, Malhotra V (2008) The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis. Mol Biol Cell 19:2579–2587PubMedCentralPubMedCrossRefGoogle Scholar
  57. Dyer CA, Benjamins JA (1990) Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J Cell Biol 111:625–633PubMedCrossRefGoogle Scholar
  58. Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94PubMedCentralPubMedCrossRefGoogle Scholar
  59. Elmouelhi N, Yarema KJ (2008) Building on what nature gave us: engineering cell glycosylation pathways. In: Flynne WG (ed) Biotechnology and bioengineering. Nova Science Publishers, Hauppauge, pp 37–74Google Scholar
  60. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630PubMedCrossRefGoogle Scholar
  61. Emmelot P, Benedetti EL (1967) Function and structure of liver plasma membranes. Intern Congr Biochem 7th, Tokyo II:195 (Abstr.)Google Scholar
  62. Enerbäck S (2009) The origins of brown adipose tissue. N Engl J Med 360:2021–2023PubMedCrossRefGoogle Scholar
  63. Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B (2010) Phosphoinositides: lipid regulators of membrane proteins. J Physiol 588:3179–3185PubMedCentralPubMedCrossRefGoogle Scholar
  64. Faulkner C (2015) A cellular backline: specialization of host membranes for defence. J Exp Bot 66:1565–1571PubMedCrossRefGoogle Scholar
  65. Fawcett DW (1962) Physiologically significant specializations of the cell surface. Circulation 26:1105–1125PubMedCrossRefGoogle Scholar
  66. Frank P, Lisanti M (2004) Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr Opin Lipidol 15:523–529PubMedCrossRefGoogle Scholar
  67. Fricker M, Hollinshead M, White N, Vaux D (1997) Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol 136:531–544PubMedCentralPubMedCrossRefGoogle Scholar
  68. Friedman A, Friedman G (2012) Plasma medicine, 2nd edn. Wiley, Hoboken, p 18CrossRefGoogle Scholar
  69. Gamper N, Shapiro MS (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 8:921–934PubMedCrossRefGoogle Scholar
  70. Geisow MJ, Evans WH (1984) pH in the endosome. Measurements during pinocytosis and receptor-mediated endocytosis. Exp Cell Res 150:36–46PubMedCrossRefGoogle Scholar
  71. Gerrow K, Triller A (2010) Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol 20:631–639PubMedCrossRefGoogle Scholar
  72. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi Z-Q, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56PubMedCrossRefGoogle Scholar
  73. Giddings TH, Wasmann C, Staehelin LA (1983) Structure of thylakoids and envelope membranes of the cyanells ofCyanophora paradoxa. Plant Physiol 71:409–419PubMedCentralPubMedCrossRefGoogle Scholar
  74. Gilford H, Shepherd RC (1904) Ateleiosis and progeria: continuous youth and premature old age. Br Med J 2:914–918Google Scholar
  75. Gimona M, Buccione R, Courtneidge SA, Linder S (2008) Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 20:235–241PubMedCrossRefGoogle Scholar
  76. Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S (2014) White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol 170:R159–R171PubMedCrossRefGoogle Scholar
  77. Goodhart RS, Shils ME (1980) Modern nutrition in health and disease, 6th edn. Lea and Febinger, Philadelphia, pp 134–138Google Scholar
  78. Goody RS, Rak A, Alexandrov K (2005) The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell Mol Life Sci 62:1657–1670PubMedCrossRefGoogle Scholar
  79. Gorter EF, Grendel F (1925) On biomolecular layers of lipoids on chromacytes of blood. J Exp Med 41:439–443PubMedCentralPubMedCrossRefGoogle Scholar
  80. Gray MW (1998) Rickettsia, typhus and the mitochondrial connection. Nature 396:109–110PubMedCrossRefGoogle Scholar
  81. Gray MW, Spencer DF (1996) In: Roberts DML, Sharp P, Alderson G, Collins M (eds) Evolution of microbial life. Cambridge University Press, Cambridge, pp 109–126Google Scholar
  82. Green DE, Murer E, Hultin HO, Richardson SH, Salmon B, Brierley GP, Baum H (1965) Association of integrated metabolic pathways with membranes. I. Glycolytic enzymes of the red blood corpuscle and yeast. Arch Biochem Biophys 112:635–647PubMedCrossRefGoogle Scholar
  83. Grimm D, Bauer J, Pietsch J, Infanger M, Eucker J, Eilles C, Schoenberger J (2011) Diagnostic and therapeutic use of membrane proteins in cancer cells. Curr Med Chem 18:176–190PubMedCrossRefGoogle Scholar
  84. Gross CG (1988) Claude Bernard and the constancy of the inner environment. Neuroscientist 4:380–385CrossRefGoogle Scholar
  85. Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41:557–584PubMedCrossRefGoogle Scholar
  86. Gunzer M, Schäfer A, Borgmann S, Grabbe S, Zänker KS, Bröcker EB, Kämpgen E, Friedl P (2000) Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13:323–332PubMedCrossRefGoogle Scholar
  87. Halbleib JM, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20:3199–3214PubMedCrossRefGoogle Scholar
  88. Hanukoglu I (1992) Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J Steroid Biochem Mol Biol 43:779–804PubMedCrossRefGoogle Scholar
  89. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88PubMedCentralPubMedCrossRefGoogle Scholar
  90. Hazel JR (1984) Effects of temperature on the structure and metabolism of cell membranes in fish. Am J Physiol 246:R460–R470PubMedGoogle Scholar
  91. Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ (2001) Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22:451–476PubMedCrossRefGoogle Scholar
  92. Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426:127–128PubMedCrossRefGoogle Scholar
  93. Herrmann JM, Neupert W (2000) Protein transport into mitochondria. Curr Opin Microbiol 3:210–214PubMedCrossRefGoogle Scholar
  94. Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573PubMedCrossRefGoogle Scholar
  95. Heuser J (2000) The production of ‘cell cortices’ for light and electron microscopy. Traffic 1:545–552PubMedCrossRefGoogle Scholar
  96. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172PubMedCrossRefGoogle Scholar
  97. Hirano S, Suzuki ST, Redies C (2003) The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci 8:d306–d355PubMedCrossRefGoogle Scholar
  98. Hirokawa N, Tilney LG, Fujiwara K, Heuser JE (1982) Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J Cell Biol 94:425–443PubMedCrossRefGoogle Scholar
  99. Hoffman M, Monroe DM III (2001) A cell-based model of hemostasis. Thromb Haemost 85:58–65Google Scholar
  100. Hozak P, Cook PR (1994) Replication factories. Trends Cell Biol 4:48–51PubMedCrossRefGoogle Scholar
  101. Hu FB, Manson JE, Willett WC (2001) Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr 20:5–19PubMedCrossRefGoogle Scholar
  102. Huang S, Spector DL (1991) Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors. Genes Dev 5:2288–2302PubMedCrossRefGoogle Scholar
  103. Hughes JR (1958) Post-tetanic potentiation. Physiol Rev 38:91–113PubMedGoogle Scholar
  104. Hulbert AJ (2003) Life, death and membrane bilayers. J Exp Biol 206:2303–2311PubMedCrossRefGoogle Scholar
  105. Hulbert AJ (2007) Membrane fatty acids as pacemakers of animal metabolism. Lipids 42:811–819PubMedCrossRefGoogle Scholar
  106. Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theor Biol 199:257–274PubMedCrossRefGoogle Scholar
  107. Hulbert AJ, Faulks S, Buttemer WA, Else PL (2002) Acyl composition of muscle membranes varies with body size in birds. J Exp Biol 205:3561–3569PubMedGoogle Scholar
  108. Hursh JB (1939) Conduction velocity and diameter of nerve fibers. Am J Physiol 127:131–139Google Scholar
  109. Hutchison C, Bridger JM, Cox LS, Kill IR (1994) Weaving a pattern from disparate threads: lamin function in nuclear assembly and DNA replication. J Cell Sci 107:3259–3269PubMedGoogle Scholar
  110. IUPAC (1997) Compendium of chemical terminology, 2nd edn. International Union of Pure and Applied Chemistry, Triangle Park. ISBN 0-521-51150-XGoogle Scholar
  111. Jackson DA, Hassan AB, Errington R, Cook P (1993) Visualization of focal sites of transcription within human nuclei. EMBO J 12:1059–1065PubMedCentralPubMedGoogle Scholar
  112. Jackson DA, Balajee AS, Mullenders L, Cook PR (1994) Sites in human nuclei where DNA damaged by ultraviolet light is repaired: visualization and localization relative to the nucleoskeleton. J Cell Sci 107:1745–1752PubMedGoogle Scholar
  113. Janmey PA, Stossel TP (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325:362–364PubMedCrossRefGoogle Scholar
  114. Jena BP (2004) Discovery of the porosome: revealing the molecular mechanism of secretion and membrane fusion in cells. J Cell Mol Med 8:1–21PubMedCrossRefGoogle Scholar
  115. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F (2001) Low triglycerides–high high-density lipoprotein cholesterol and risk of ischemic heart disease. Arch Intern Med 161:361–366PubMedCrossRefGoogle Scholar
  116. Ju YH, Clausen LM, Allred KF, Almada AL, Helferich WG (2004) Beta-sitosterol, beta-sitosterol glucoside, and a mixture of beta-sitosterol and beta-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cellsin vitro and in ovariectomized athymic mice. J Nutr 134:1145–1151PubMedGoogle Scholar
  117. Karadsheh MF, Byun N, Mount DB, Delpire E (2004) Localization of the KCC4 potassium-chloride cotransporter in the nervous system. Neuroscience 123:381–391PubMedCrossRefGoogle Scholar
  118. Keller TC 3rd, Conzelman KA, Chasan R, Mooseker MS (1985) Role of myosin in terminal web contraction in isolated intestinal epithelial brush borders. J Cell Biol 100:1647–1655PubMedCrossRefGoogle Scholar
  119. Kessel A, Ben-Tal N, May S (2001) Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations. Biophys J 81:643–658PubMedCentralPubMedCrossRefGoogle Scholar
  120. Korn ED (1968) Structure and function of the plasma membrane: a biochemical perspective. J Gen Physiol 52:257–278PubMedCentralPubMedCrossRefGoogle Scholar
  121. Krauss M, Haucke V (2007) Phosphoinositides: regulators of membrane traffic and protein function. FEBS Lett 581:2105–2111PubMedCrossRefGoogle Scholar
  122. Kuehnel W (2003) Color atlas of cytology, histology, and microscopic anatomy, 4th edn. Thieme Medical Publishers, Stuttgart, p 34Google Scholar
  123. Kute TE, Quadri Y (1991) Measurement of proliferation nuclear and membrane markers in tumor cells by flow cytometry. J Histochem Cytochem 39:1125–1130PubMedCrossRefGoogle Scholar
  124. Lassing I, Lindberg V (1985) Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilin. Nature 314:472–474PubMedCrossRefGoogle Scholar
  125. Lauf NC, Adragna NC (2000) K–Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem 10:341–354PubMedCrossRefGoogle Scholar
  126. Leblond CP, Puchtler H, Clermont Y (1960) Structures corresponding to terminal bars and terminal web in many types of cells. Nature 186:784–788PubMedCrossRefGoogle Scholar
  127. Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and golgi. Annu Rev Cell Dev Biol 20:87–123PubMedCrossRefGoogle Scholar
  128. Li X, Everson W, Smart E (2005) Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc Med 15:92–96PubMedCrossRefGoogle Scholar
  129. Linder S, Aepfelbacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13:376–385PubMedCrossRefGoogle Scholar
  130. Lipowsky R, Dimova R (2003) Domains in membranes and vesicles. J Phys Condens Matter 15:S31–S45CrossRefGoogle Scholar
  131. Loeb S, Van Hessen F, Shahaf D (1976) Production of energy from concentrated brines by pressure-retarded osmosis: II. Experimental results and projected energy costs. J Membr Sci 1:249–269CrossRefGoogle Scholar
  132. Lu JY, Verkruyse LA, Hofmann SL (2002) The effects of lysosomotropic agents on normal and INCL cells provide further evidence for the lysosomal nature of palmitoyl-protein thioesterase function. Biochim Biophys Acta 1583:35–44PubMedCrossRefGoogle Scholar
  133. Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632PubMedCrossRefGoogle Scholar
  134. Martin SJ, Reutelingsperger CPM, McGahon AJ, Rader JA, VanSchie RCCA, Laface DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556PubMedCrossRefGoogle Scholar
  135. Martin CA, Milinsk MC, Visentainer JV, Matsushita M, De-Souza NE (2007) Trans fatty acid-forming processes in foods: a review. An Acad Bras Cienc 79:343–350PubMedCrossRefGoogle Scholar
  136. Marx U, Lassmann G, Holzhütter HG, Wüstner D, Müller P, Höhlig A, Kubelt J, Herrmann A (2000) Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach. Biophys J 78:2628–2640PubMedCentralPubMedCrossRefGoogle Scholar
  137. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454PubMedCrossRefGoogle Scholar
  138. Mayer F (2003) Cytoskeletons in prokaryotes. Cell Biol Int 27:429–438PubMedCrossRefGoogle Scholar
  139. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560PubMedCrossRefGoogle Scholar
  140. McGraw Hill Encyclopedia of Science and Technology (2007) Photosynthesis, 10th edn, vol 13. McGraw Hill Companies, New York, p 469Google Scholar
  141. Mills AD, Blow JJ, White JG, Amos WB, Wilcock D, Laskey RA (1989) Replication occurs at discrete foci spaced throughout nuclei replicatingin vitro. J Cell Sci 94:471–477PubMedGoogle Scholar
  142. Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86PubMedCrossRefGoogle Scholar
  143. Moen PTJ, Smith KP, Lawrence JB (1995) Compartmentalization of specific pre-mRNA metabolism: an emerging view. Hum Mol Genet 4:1779–1789PubMedGoogle Scholar
  144. Morrissey JH, Pureza V, Davis-Harrison RL, Sligar SG, Rienstra CM, Kijac AZ, Ohkubo YZ, Tajkhorshid E (2009) Protein-membrane interactions: blood clotting on nanoscale bilayers. J Thromb Haemost Suppl 1:169–172CrossRefGoogle Scholar
  145. Müller H, Lindman AS, Brantsaeter AL, Pedersen JI (2003) The serum LDL/HDL cholesterol ratio is influenced more favorably by exchanging saturated with unsaturated fat than by reducing saturated fat in the diet of women. J Nutr 133:78–83PubMedGoogle Scholar
  146. Mundel P, Reiser J, Zúñiga Mejía Borja A, Pavenstädt H, Davidson GR, Kriz W, Zeller R (1997) Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res 236:248–258PubMedCrossRefGoogle Scholar
  147. Nohe A, Petersen NO (2004) Analyzing protein-protein interactions in cell membranes. Bioessays 26:196–203PubMedCrossRefGoogle Scholar
  148. Nohturfft A, Zhang SC (2009) Coordination of lipid metabolism in membrane biogenesis. Annu Rev Cell Dev Biol 25:539–566PubMedCrossRefGoogle Scholar
  149. Oshima Y, Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Bokuda K, Narita T, Kurosawa H, Sun-Wada G-H, Wada Y, Yamada T, Takemoto M, Saleem MA, Quaggin SE, Itoh H (2011) Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 22:2203–2212PubMedCentralPubMedCrossRefGoogle Scholar
  150. Osman C, Voelker DR, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192:7–16PubMedCentralPubMedCrossRefGoogle Scholar
  151. Overton E (1895) Über die osmotischen Eigenschaften der Lebenden Pflanzen und tierzelle. Vjschr Natur Ges Zürich 40:159–201Google Scholar
  152. Pabst R, Sterzl RB (1983) Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int 24:626–631PubMedCrossRefGoogle Scholar
  153. Parham P (2005) The immune system, 2nd edn. Garland Science, New York, pp 244–245Google Scholar
  154. Parsons DF (1963) Mitochondrial structure: two types of subunits on negatively stained mitochondrial membranes. Science 140:985–987PubMedCrossRefGoogle Scholar
  155. Partridge MA, Marcantonio EE (2006) Initiation of attachment and generation of mature focal adhesions by integrin-containing filopodia in cell spreading. Initiation of attachment and generation of mature focal adhesions by integrin-containing filopodia in cell spreading. Mol Biol Cell 17:4237–4248PubMedCentralPubMedCrossRefGoogle Scholar
  156. Peitsaro N, Polianskyte Z, Tuimala J, Pörn-Ares I, Liobikas J, Speer O, Lindholm D, Thompson J, Eriksson O (2008) Evolution of a family of metazoan active-site serine enzymes from penicillin-binding proteins: a novel facet of the bacterial legacy. BMC Evol Biol 8:26PubMedCentralPubMedCrossRefGoogle Scholar
  157. Pelkmans L (2005) Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim Biophys Acta 1746:295–304PubMedCrossRefGoogle Scholar
  158. Pendse S, Singh A, Zawada E (2008) Initiation of dialysis. In: Handbook of dialysis, 4th edn. New York, pp 14–21Google Scholar
  159. Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 119:260–272PubMedCrossRefGoogle Scholar
  160. Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269:7709–7718PubMedGoogle Scholar
  161. Petersen RV (1985) Biodegradable drug delivery systems based on polypeptides. In: Gebelein CG, Carraher CE (eds) Bioactive polymeric systems: an overview. Plenum Press, New York, pp 151–177CrossRefGoogle Scholar
  162. Plebani M, De Paoli M, Basso D, Roveroni G, Giacomini A, Galeotti F, Corsini A (1996) Serum tumor markers in colorectal cancer staging, grading, and follow-up. J Surg Oncol 62:239–244PubMedCrossRefGoogle Scholar
  163. Purbhoo MA, Irvine DJ, Huppa JB (2004) T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol 5:524–530PubMedCrossRefGoogle Scholar
  164. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (2008) Neuroscience, 4th edn. Sinauer Associates Inc., Publishers, Sunderland, pp 156–157Google Scholar
  165. Raices M, D’Angelo MA (2012) Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 13:687–699PubMedCrossRefGoogle Scholar
  166. Raynard RS, Cossins AR (1991) Homeoviscous adaptation and thermal compensation of sodium pump of trout erythrocytes. Am J Physiol Regul Integr Comp Physiol 260:R916–R924Google Scholar
  167. Reese JB, Urry LA, Cain ML, Wasserman SA (2011) Campbell biology, 10th edn. Amazon Publishing, SeattleGoogle Scholar
  168. Reinheckel T (2013) On the road to inflammation: linking lysosome disruption, lysosomal protease release and necrotic death of immune cells. Cell Cycle 12:1994PubMedCentralPubMedCrossRefGoogle Scholar
  169. Renner M, Specht CG (2008) Triller molecular dynamics of postsynaptic receptors and scaffold proteins. Curr Opin Neurobiol 18:532–540PubMedCrossRefGoogle Scholar
  170. Retamal MJ, Cisternas MA, Gutierrez-Maldonado SE, Perez-Acle T, Seifert B, Busch M, Huber P, Volkmann UG (2014) Towards bio-silicon interfaces: formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase. J Chem Phys 141:104201PubMedCrossRefGoogle Scholar
  171. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi CA, Leo S, Rimessi A (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351PubMedCentralPubMedCrossRefGoogle Scholar
  172. Robertson I (1959) The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp 16:3–43PubMedGoogle Scholar
  173. Ross MH, Wojciech P (2011) Chapter 5: epithelial tissue. Histology: a text and atlas: with correlated cell and molecular biology. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, p 110Google Scholar
  174. Rottiers P, Saltel F, Daubon T, Chaigne-Delalande B, Tridon V, Billottet C, Reuzeau E, Génot E (2009) TGFbeta-induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. J Cell Sci 122:4311–4318PubMedCrossRefGoogle Scholar
  175. Rout MP, Wente SR (1994) Pores for thought: nuclear pore complex proteins. Trends Cell Biol 4:357–365PubMedCrossRefGoogle Scholar
  176. Scorletti E, Byrne CD (2013) Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr 33:231–248PubMedCrossRefGoogle Scholar
  177. Settembre C, Fraldi A, Di Medina L, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296PubMedCentralPubMedCrossRefGoogle Scholar
  178. Shen MR, Lin AC, Hsu YM, Chang TJ, Tang MJ, Alper SL, Ellory JC, Chou CY (2004) Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells. J Biol Chem 279:40017–40025PubMedCrossRefGoogle Scholar
  179. Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126:435–439PubMedCrossRefGoogle Scholar
  180. Shih Y-L, Rothfield L (2006) The bacterial cytoskeleton. Microbiol Mol Biol Rev 70:729–754PubMedCentralPubMedCrossRefGoogle Scholar
  181. Shiozaki A, Takemoto K, Ichikawa D, Fujiwara H, Konishi H, Kosuga T, Komatsu S, Okamoto K, Kishimoto M, Marunaka Y, Otsuji E (2014) The K-Cl cotransporter KCC3 as an independent prognostic factor in human esophageal squamous cell carcinoma. Biomed Res Int 2014:936401PubMedCentralPubMedGoogle Scholar
  182. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572PubMedCrossRefGoogle Scholar
  183. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRefGoogle Scholar
  184. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM (2010) Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr 91:535–546PubMedCentralPubMedCrossRefGoogle Scholar
  185. Smith-Kirwin SM, O’Connor DM, de Johnston J, Lancey ED, Hassink SG, Funanage VL (1998) Leptin expression in human mammary epithelial cells and breast milk. J Clin Endocrinol Metabol 83:1810–1813CrossRefGoogle Scholar
  186. Spector DL (1990) Higher order nuclear organisation: three-dimensional distribution of small nuclear ribonucleoprotein particles. Proc Natl Acad Sci U S A 87:147–151PubMedCentralPubMedCrossRefGoogle Scholar
  187. Suda Y, Nakano A (2012) The yeast Golgi apparatus. Traffic 13:505–510PubMedCrossRefGoogle Scholar
  188. Sugiyama M, Imai A, Furui T, Tamaya T (2003) Membrane-associated serine/threonine protein phosphatase in endometrial cancer. Am J Obstet Gynecol 189:1666–1669PubMedCrossRefGoogle Scholar
  189. Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4:775–789PubMedCrossRefGoogle Scholar
  190. Swansona SJ, Bethkea PC, Jones RL (1998) Barley aleuone cells contain two types of vacuole: characterization of lytic organelles by use of fluorescent probes. Plant Cell 10:685–698CrossRefGoogle Scholar
  191. Szebeni J (1998) The interaction of liposomes with the complement system. Crit Rev Ther Drug Carrier Syst 15:57–88PubMedCrossRefGoogle Scholar
  192. Takeichi M (1988) The cadherins: cell–cell adhesion molecules controlling animal morphogenesis. Development 102:639–655PubMedGoogle Scholar
  193. Tamura Y, Onguka O, Itoh K, Endo T, Iijima M, Claypool SM, Sesaki H (2012) Phosphatidylethanolamine biosynthesis in mitochondria: phosphatidylserine (PS) trafficking is independent of a PS decarboxylase and intermembrane space proteins UPS1P and UPS2P. J Biol Chem 287:43961–43971PubMedCentralPubMedCrossRefGoogle Scholar
  194. Tarone G, Cirillo D, Giancotti FG, Comoglio PM, Marchisio PC (1985) Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp Cell Res 159:141–157PubMedCrossRefGoogle Scholar
  195. Thoene JG, Lemons R, Boskovich S, Borysko K (1985) Inhibitors of protein synthesis also inhibit lysosomal proteolysis. Studies using cystinotic fibroblasts. J Clin Investig 75:370–376PubMedCentralPubMedCrossRefGoogle Scholar
  196. Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P, Yoder RJ, Robbertse B, Spatafora JW, Rappé MS, Giovannoni SJ (2011) Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep 1:13PubMedCentralPubMedCrossRefGoogle Scholar
  197. Trencsenyi G, Nagy G, Bako F, Kertai P, Banfalvi G (2012) Incomplete chromatin condensation in enlarged rat myelocytic leukemia cells. DNA Cell Biol 31:470–478PubMedCentralPubMedCrossRefGoogle Scholar
  198. van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65:3756–3788PubMedCrossRefGoogle Scholar
  199. Váró G, Szegletes Z (2012) Artificial and natural membranes. In: Frewin C (ed) Atomic force microscopy investigations into biology – from cell to protein. InTech, Rijeka, pp 219–234Google Scholar
  200. Vázquez-Vela ME, Torres N, Tovar AR (2008) White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 39:715–728PubMedCrossRefGoogle Scholar
  201. Vermeulen JF, Kornegoor R, van der Wall E, van der Groep P, van Diest PJ (2013a) Differential expression of growth factor receptors and membrane-bound tumor markers for imaging in male and female breast cancer. PLoS One 8:e53353PubMedCentralPubMedCrossRefGoogle Scholar
  202. Vermeulen JF, van der Wall E, Witkamp AJ, van Diest PJ (2013b) Analysis of expression of membrane-bound tumor markers in ductal carcinomain situ of the breast: paving the way for molecular imaging. Cell Oncol (Dordr) 36:333–340CrossRefGoogle Scholar
  203. Voet D, Voet JG, Pratt CW (2006) Fundamentals of biochemistry, 2nd edn. Wiley, New York, p 547Google Scholar
  204. Voloshin SA, Kaprelyants AS (2004) Cell-cell interactions in bacterial populations. Biochemistry (Mosc) 69:1268–1275CrossRefGoogle Scholar
  205. von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672CrossRefGoogle Scholar
  206. Wade JB, DiScala VA, Karnovsky MJ (1975) Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. I. The granular cell. J Membr Biol 22:385–402PubMedCrossRefGoogle Scholar
  207. Wansink DG, Schul W, Kraan I, Steensel B, Driel R, Jong L (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293PubMedCrossRefGoogle Scholar
  208. Weng T-Y, Chiu W-T, Liu H-S, Cheng H-C, Shen M-R, Mount DB, Chou C-Y (2013) Glycosylation regulates the function and membrane localization of KCC4. Biochim Biophys Acta 1833:1133–1146PubMedCrossRefGoogle Scholar
  209. Whitney EN, Rolfes SR (2008) Understanding nutrition, 11th edn. Thomson Wadsworth Publishing, Belmont, p 154Google Scholar
  210. Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362:1119–1134PubMedCentralPubMedCrossRefGoogle Scholar
  211. Wise RR, Hoober JK (eds) (2006) The structure and function of plastids. Advances in photosynthesis and respiration, vol 23. Springer, Dordrecht, p 575Google Scholar
  212. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376PubMedCentralPubMedCrossRefGoogle Scholar
  213. Xing Y, Lawrence JB (1993) Nuclear RNA tracks: structural basis for transcription and splicing? Trends Cell Biol 3:346–353PubMedCrossRefGoogle Scholar
  214. Xiong S, Li H, Yu B, Wu J, Lee RJ (2010) Triggering liposomal drug release with a lysosomotropic agent. J Pharm Sci 99:5011–5018PubMedCrossRefGoogle Scholar
  215. Yan M, Yang X, Wang L, Clark D, Zuo H, Ye D, Chen W, Zhang P (2013) Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma. Mol Cell Proteomics 12:3271–3284PubMedCentralPubMedCrossRefGoogle Scholar
  216. Yu YH, Liu BH, Mersmann HJ, Ding ST (2006) Porcine peroxisome proliferator-activated receptor gamma induces transdifferentiation of myocytes into adipocytes. J Anim Sci 84:2655–2665PubMedCrossRefGoogle Scholar
  217. Zaidel-Bar R, Cohen M, Addadi L, Geiger B (2004) Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans 32:416–420PubMedCrossRefGoogle Scholar
  218. Zola H (2000) Markers of cell lineage, differentiation and activation. J Biol Regul Homeost Agents 14:218–219PubMedGoogle Scholar
  219. Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, Boumsell LD, Buckley C, Bühring HJ, Clark G, Engel P, Fox D, Jin BQ, Macardle PJ, Malavasi F, Mason D, Stockinger H, Yang X (2007) CD molecules 2006 – human cell differentiation molecules. J Immunol Methods 318:1–5CrossRefGoogle Scholar
  220. Zorzano A, Fandos A, Palacín M (2000) Role of plasma membrane transporters in muscle metabolism. Biochem J 349:667–688PubMedCentralPubMedCrossRefGoogle Scholar
  221. Zwaal RFA (1978) Membrane and lipid involvement in blood coagulation. Biochim Biophys Acta 515:163–205PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of DebrecenDebrecenHungary

Personalised recommendations