Skip to main content

Hybrid Optimization Approach for Determination of Thermal Boundary Conditions

  • Chapter
  • First Online:
Book cover Critical Infrastructure Protection Research

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 12))

Abstract

The estimation of thermal boundary conditions occurring during heat treatment processes is an essential requirement for the characterization of heat transfer phenomena. In this work, the performance of five optimization techniques is studied. These models are the Conjugate Gradient Method, the Levenberg-Marquardt Method, the Simplex method, the NSGA II algorithm and a hybrid approach based on the NSGA II and Levenberg-Marquardt Method sequence. The models are used to estimate the heat transfer coefficient in 2D axis symmetrical case during transient heat transfer. The performance of the optimization methods is demonstrated using numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, J.V., Blackwell, B., St Clair, C.R., Jr.: Inverse Heat Conduction. Wiley, New York (1985)

    Google Scholar 

  2. Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-posed Problems. Winston, Washington, DC (1977)

    Google Scholar 

  3. Alifanov, O.M.: Inverse Heat Transfer Problems. Springer, Berlin/Heidelberg (1994)

    Book  MATH  Google Scholar 

  4. Özisik, M.N., Orlande, H.R.B.: Inverse Heat Transfer: Fundamentals and Applications. Taylor & Francis, New York (2000)

    Google Scholar 

  5. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MATH  Google Scholar 

  6. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optimiz. 9(1), 112–147 (1996)

    Article  MathSciNet  Google Scholar 

  7. Das, R.: A simplex search method for a conductive–convective fin with variable conductivity. Int. J. Heat Mass Transf. 54, 5001–5009 (2011)

    Article  MATH  Google Scholar 

  8. Nelles, O.: Nonlinear System Identification. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  9. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Computer J. 7, 149–154 (1964)

    Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester, UK (2001)

    MATH  Google Scholar 

  12. Veldhuizen, D.A.V., Lamont, G.B.: Multi-objective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. 8(2), 125–147 (2000)

    Article  Google Scholar 

  13. Clark, J., Tye, R.: Thermophysical properties reference data for some key engineering alloys. High Temp. High Pressures 35/36, 1–14 (2003/2004)

    Google Scholar 

  14. Majorek, A., Scholtes, B., Müller, H., Macherauch, E.: Influence of heat transfer on development of residual stresses in quenched steel cylinders. Steel research No. 4, pp. 146–151 (1994)

    Google Scholar 

  15. Tensi, H.M., Stick, A.: Martens hardening of steel—prediction of temperature distribution and surface hardness. Mater. Sci. Forum 102–104, 741–775 (1992)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of this work by the Hungarian State and the European Union under the TÁMOP-4.2.1. B -11/2/KMR-2011-0001 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Felde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Felde, I. (2016). Hybrid Optimization Approach for Determination of Thermal Boundary Conditions. In: Nádai, L., Padányi, J. (eds) Critical Infrastructure Protection Research. Topics in Intelligent Engineering and Informatics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-28091-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28091-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28090-5

  • Online ISBN: 978-3-319-28091-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics