Microbes and the Fossil Record: Selected Topics in Paleomicrobiology

  • Alexandru M. F. TomescuEmail author
  • Ashley A. Klymiuk
  • Kelly K. S. Matsunaga
  • Alexander C. Bippus
  • Glenn W. K. Shelton
Part of the Advances in Environmental Microbiology book series (AEM, volume 1)


The study of microbial fossils involves a broad array of disciplines and covers a vast diversity of topics, of which we review a select few, summarizing the state of the art. Microbes are found as body fossils preserved in different modes and have also produced recognizable structures in the rock record (microbialites, microborings). Study of the microbial fossil record and controversies arising from it have provided the impetus for the assembly and refining of powerful sets of criteria for recognition of bona fide microbial fossils. Different types of fossil evidence concur in demonstrating that microbial life was present in the Archean, close to 3.5 billion years ago. Early eukaryotes also fall within the microbial realm and criteria developed for their recognition date the oldest unequivocal evidence close to 2.0 billion years ago (Paleoproterozoic), but Archean microfossils >3 billion years old are strong contenders for earliest eukaryotes. In another dimension of their contribution to the fossil record, microbes play ubiquitous roles in fossil preservation, from facilitating authigenic mineralization to replicating soft tissue with extracellular polymeric substances, forming biofilms that inhibit decay of biological material, or stabilizing sediment interfaces. Finally, studies of the microbial fossil record are relevant to profound, perennial questions that have puzzled humanity and science—they provide the only direct window onto the beginnings and early evolution of life; and the methods and criteria developed for recognizing ancient, inconspicuous traces of life have yielded an approach directly applicable to the search for traces of life on other worlds.


Fossil Microbial Biogenicity Prokaryote Eukaryote Fossil preservation Archean Proterozoic Microbialite Stromatolite Microbially induced sedimentary structure (MISS) Microboring 



We are indebted to Emma Fryer for momentous help with obtaining permissions from publishers to use copyrighted material.


  1. Adams DG, Duggan PS (2008) Cyanobacteria-bryophyte symbioses. J Exp Bot 59:1047–1058PubMedCrossRefGoogle Scholar
  2. Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13CrossRefGoogle Scholar
  3. Ahlich K, Sieber TN (2006) The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270CrossRefGoogle Scholar
  4. Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. J Sed Petrol 37:1163–1178CrossRefGoogle Scholar
  5. Allison PA (1988a) The role of anoxia in the decay and mineralization of proteinaceous macro–fossils. Paleobiology 14:139–154CrossRefGoogle Scholar
  6. Allison PA (1988b) Taphonomy of the Eocene London clay biota. Palaeontology 31:1079–1100Google Scholar
  7. Allison PA, Smith CR, Kukert H et al (1991) Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin. Paleobiology 17:78–89CrossRefGoogle Scholar
  8. Allwood AC, Walter MR, Burch IW et al (2007) 3.4 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res 158:198–227CrossRefGoogle Scholar
  9. Alt JC, Mata P (2000) On the role of microbes in the alteration of submarine basaltic glass: a TEM study. Earth Planet Sci Lett 181:301–313CrossRefGoogle Scholar
  10. Altermann W, Schopf JW (1995) Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res 75:65–90PubMedCrossRefGoogle Scholar
  11. Altermann W, Kazmierczak J, Oren A et al (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4:147–166CrossRefGoogle Scholar
  12. Amano K, Little CT (2005) Miocene whale-fall community from Hokkaido, northern Japan. Palaeogeogr Palaeoclimat Palaeoecol 215:345–356CrossRefGoogle Scholar
  13. Anders E (1996) Evaluating the evidence for past life on Mars. Science 274:2119–2121PubMedCrossRefGoogle Scholar
  14. Anderson EP, Schiffbauer JD, Xiao S (2011) Taphonomic study of Ediacaran organic–walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology 39:643–646CrossRefGoogle Scholar
  15. Antcliffe JB, Hancy AD (2013a) Critical questions about early character acquisition—comment on Retallack 2012: Some Ediacaran fossils lived on land. Evol Dev 15:225–227PubMedCrossRefGoogle Scholar
  16. Antcliffe JB, Hancy AD (2013b) Reply to Retallack (2013): Ediacaran characters. Evol Dev 15:389–392PubMedCrossRefGoogle Scholar
  17. Antcliffe JB, McLoughlin N (2009) Deciphering fossil evidence for the origin of life and the origin of animals: common challenges in different worlds. In: Seckbach J, Walsh M (eds) From fossils to astrobiology. Springer, Dordrecht, pp 211–229Google Scholar
  18. Appel PWU, Moorbath S, Myers JS (2003) Isuasphaera isua (Pflug) revisited. Precambrian Res 126:309–312CrossRefGoogle Scholar
  19. Arning ET, Birgel D, Brunner B et al (2009) Bacterial formation of phosphatic laminites off Peru. Geobiology 7:295–307PubMedCrossRefGoogle Scholar
  20. Arning ET, Birgel D, Schulz-Vogt HN et al (2008) Lipid biomarker patterns of phosphogenic sediments from upwelling regions. Geomicrobiol J 25:69–82CrossRefGoogle Scholar
  21. Arouri K, Greenwood PF, Walter MR (1999) A possible chlorophycean affinity of some Neoproterozoic acritarchs. Org Geochem 30:1323–1337CrossRefGoogle Scholar
  22. Arouri KR, Greenwood PF, Walter MR (2000) Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Org Geochem 31:75–89CrossRefGoogle Scholar
  23. Awramik SM (2006) Respect for stromatolites. Nature 441:700–701PubMedCrossRefGoogle Scholar
  24. Awramik SM, Buchheim HP (2009) A giant, Late Archean lake system: the Meentheena Member (Tumbiana Formation; Fortescue Group), Western Australia. Precambrian Res 174:215–240CrossRefGoogle Scholar
  25. Awramik SM, Barghoorn ES (1977) The Gunflint microbiota. Precambrian Res 5:121–142CrossRefGoogle Scholar
  26. Awramik SM, Grey K (2005) Stromatolites: biogenicity, biosignatures, and bioconfusion. In: Gladstone GR, Hoover RB, Levin GV et al. (eds) Astrobiology and Planetary Missions. SPIE Proceedings 5906:1–9Google Scholar
  27. Awramik SM, Margulis L (1974) Stromatolite Newslett 2:5Google Scholar
  28. Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Nat Acad Sci USA 85:1327–1329PubMedPubMedCentralCrossRefGoogle Scholar
  29. Awramik SM, Schopf JW, Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20:357–374CrossRefGoogle Scholar
  30. Bailey JV, Joye SB, Kalanetra KM et al (2007) Palaeontology: undressing and redressing Ediacaran embryos (Reply). Nature 446:E10–E11CrossRefGoogle Scholar
  31. Banerjee NR, Simonetti A, Furnes H et al (2007) Direct dating of Archean microbial ichnofossils. Geology 35:487–490CrossRefGoogle Scholar
  32. Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147:563–577PubMedCrossRefGoogle Scholar
  33. Barrow JR (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247PubMedCrossRefGoogle Scholar
  34. Bartley JK (1996) Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record. Palaios 11:571–586CrossRefGoogle Scholar
  35. Battison L, Brasier MD (2012) Remarkably preserved prokaryote and eukaryote microfossils within 1 Ga-old lake phosphates of the Torridon Group, NW Scotland. Precambrian Res 196–197:204–217CrossRefGoogle Scholar
  36. Baxter RW (1950) Peltastrobus reedae: a new sphenopsid cone from the Pennsylvanian of Indiana. Bot Gaz 112:174–182CrossRefGoogle Scholar
  37. Bazylinski DA (1996) Controlled biomineralization of magnetic minerals by magnetotactic bacteria. Chem Geol 132:191–198CrossRefGoogle Scholar
  38. Bazylinski DA, Frankel RB (2003) Biologically controlled mineralization in prokaryotes. Rev Miner Geochem 54:217–247CrossRefGoogle Scholar
  39. Bekker A, Holland HD, Wang P-L et al (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120PubMedCrossRefGoogle Scholar
  40. Bengtson S, Belivanova V, Rasmussen B et al (2009) The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proc Nat Acad Sci USA 106:7729–7734PubMedPubMedCentralCrossRefGoogle Scholar
  41. Beraldi-Campesi H, Garcia-Pichel F (2011) The biogenicity of modern terrestrial roll-up structures and its significance for ancient life on land. Geobiology 9:10–23PubMedCrossRefGoogle Scholar
  42. Beraldi-Campesi H, Farmer JD, Garcia-Pichel F (2014) Modern terrestrial sedimentary biostructures and their fossil analogs in Mesoproterozoic subaerial deposits. Palaios 29:45–54CrossRefGoogle Scholar
  43. Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Ann Rev Microbiol 43:147–171CrossRefGoogle Scholar
  44. Bidartondo MI, Read DJ, Trappe JM et al (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577PubMedPubMedCentralCrossRefGoogle Scholar
  45. Boal D, Ng R (2010) Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria. Paleobiology 36:555–572CrossRefGoogle Scholar
  46. Bomfleur B, McLoughlin S, Vajda V (2014) Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science 343:1376–1377PubMedCrossRefGoogle Scholar
  47. Boyce CK, Hazen RM, Knoll AH (2002) Non-destructive, in situ, cellular-scale mapping of elemental abundances including organic carbon in permineralized fossils. Proc Nat Acad Sci USA 98:5970–5974CrossRefGoogle Scholar
  48. Brack-Hanes SD, Vaughn JC (1978) Evidence of Paleozoic chromosomes from lycopod microgametophytes. Science 200:1383–1385PubMedCrossRefGoogle Scholar
  49. Bradley JP, Harvey RP, McSween HY Jr (1997) No ‘nannofossils’ in martian meteorite. Nature 390:454–455PubMedCrossRefGoogle Scholar
  50. Bradley JP, McSween HY Jr, Harvey RP (1998) Epitaxial growth of nanophase magnetite in Martian meteorite ALH 84001: implications for biogenic mineralization. Meteorit Planet Sci 33:765–773PubMedCrossRefGoogle Scholar
  51. Brasier MD, Wacey D (2012) Fossils and astrobiology: new protocols for cell evolution in deep time. Int J Astrobiol 11:217–228CrossRefGoogle Scholar
  52. Brasier MD, Green OR, Jephcoat AP et al (2002) Questioning the evidence for Earth’s oldest fossils. Nature 417:76–81CrossRefGoogle Scholar
  53. Brasier M, Green O, Lindsay J et al (2004) Earths oldest (~3.5 Ga) fossils and the ‘early eden hypothesis’: questioning the evidence. Origins Life Evol B 34:257–269CrossRefGoogle Scholar
  54. Brasier M, McLoughlin N, Green O et al (2006) A fresh look at the fossil evidence for Early Archaean cellular life. Phil Trans R Soc B 361:887–902PubMedPubMedCentralCrossRefGoogle Scholar
  55. Bridgewater D, Allaart JH, Schopf JW et al (1981) Microfossil-like objects from the Archean of Greenland: a cautionary note. Nature 289:51–53CrossRefGoogle Scholar
  56. Briggs DE (1999) Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Phil Trans R Soc Lond B354:7–17CrossRefGoogle Scholar
  57. Briggs DE (2003a) The role of decay and mineralization in the preservation of soft-bodied fossils. Ann Rev Earth Planet Sci 31:275–301CrossRefGoogle Scholar
  58. Briggs DE (2003b) The role of biofilms in the fossilization of non-biomineralized tissues. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Kluwer, Dordrecht, pp 281–290CrossRefGoogle Scholar
  59. Briggs DE, Kear AJ (1993) Fossilization of soft tissue in the laboratory. Science 259:439–1442CrossRefGoogle Scholar
  60. Briggs DE, Kear AJ (1994) Decay and mineralization of shrimps. Palaios 9:431–456CrossRefGoogle Scholar
  61. Briggs DE, Wilby PR (1996) The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. J Geol Soc 153:665–668CrossRefGoogle Scholar
  62. Briggs DEG, Kear AJ, Martill DM et al (1993) Phosphatization of soft-tissue in experiments and fossils. J Geol Soc 150:1035–1038CrossRefGoogle Scholar
  63. Briggs DE, Moore RA, Shultz JW et al (2005) Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proc R Soc B: Biol Sci 272:627–632CrossRefGoogle Scholar
  64. Briggs DE, Wilby PR, Pérez-Moreno BP et al (1997) The mineralization of dinosaur soft tissue in the Lower Cretaceous of Las Hoyas, Spain. J Geol Soc 154:587–588CrossRefGoogle Scholar
  65. Brock F, Parkes RJ, Briggs DE (2006) Experimental pyrite formation associated with decay of plant material. Palaios 21:499–506CrossRefGoogle Scholar
  66. Brocks JJ, Logan GA, Buick R et al (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedCrossRefGoogle Scholar
  67. Brocks JJ, Buick R, Logan GA et al (2003a) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67:4289–4319CrossRefGoogle Scholar
  68. Brocks JJ, Buick R, Logan GA et al (2003b) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335CrossRefGoogle Scholar
  69. Büdel B, Weber B, Kühl M et al (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268CrossRefGoogle Scholar
  70. Buick R (1984) Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archean stromatolites? Precambrian Res 24:157–172CrossRefGoogle Scholar
  71. Buick R (1990) Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from the 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5:441–459CrossRefGoogle Scholar
  72. Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77PubMedCrossRefGoogle Scholar
  73. Buick R (2001) Life in the Archean. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 13–21CrossRefGoogle Scholar
  74. Buick R (2010) Ancient acritarchs. Nature 463:885–886PubMedCrossRefGoogle Scholar
  75. Buick R (2012) Geobiology of the Archean Eon. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 351–370CrossRefGoogle Scholar
  76. Buick R, Dunlop J (1990) Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37:247–277CrossRefGoogle Scholar
  77. Buick R, Knoll AH (1999) Acritarchs and microfossils from the Mesoproterozoic Bangemall Group, Northwestern Australia. J Paleontol 73:744–764PubMedGoogle Scholar
  78. Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5:161–181CrossRefGoogle Scholar
  79. Burke C, Steinberg P, Rusch D et al (2011) Bacterial community assembly based on functional genes rather than species. Proc Nat Acad Sci USA 108:14288–14293PubMedPubMedCentralCrossRefGoogle Scholar
  80. Burne RV, Moore L (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254CrossRefGoogle Scholar
  81. Buseck PR, Dunin-Borkowski RE, Devouard B et al (2001) Magnetite morphology and life on Mars. Proc Nat Acad Sci USA 98:13490–13495PubMedPubMedCentralCrossRefGoogle Scholar
  82. Butler IB, Rickard D (2000) Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochim Cosmochim Acta 64:2665–2672CrossRefGoogle Scholar
  83. Butterfield NJ (1995) Secular distribution of Burgess‐Shale‐type preservation. Lethaia 28:1–13CrossRefGoogle Scholar
  84. Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404CrossRefGoogle Scholar
  85. Butterfield NJ (2001) Paleobiology of the Late Mesoproterozoic (ca. 1200 Ma) hunting formation, Somerset Island, arctic Canada. Precambrian Res 111:235–256CrossRefGoogle Scholar
  86. Butterfield NJ (2002) Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology 28:155–171CrossRefGoogle Scholar
  87. Butterfield NJ (2005a) Probable Proterozoic fungi. Paleobiology 31:165–182CrossRefGoogle Scholar
  88. Butterfield NJ (2005b) Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt Formation, arctic Canada. Lethaia 38:155–169CrossRefGoogle Scholar
  89. Butterfield NJ, Balthasar U, Wilson LA (2007) Fossil diagenesis in the Burgess Shale. Palaeontology 50:537–543CrossRefGoogle Scholar
  90. Butterfield NJ (2009) Modes of pre-Ediacaran multicellularity. Precambrian Res 173:201–2011CrossRefGoogle Scholar
  91. Cai Y, Schiffbauer JD, Hua H et al (2012) Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeogr Palaeoclimat Palaeoecol 326:109–117CrossRefGoogle Scholar
  92. Callot G, Maurette M, Pottier L et al (1987) Biogenic etching of microfractures in amorphous and crystalline silicates. Nature 328:147–149CrossRefGoogle Scholar
  93. Callow RH, Brasier MD (2009) Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models. Earth Sci Rev 96:207–219CrossRefGoogle Scholar
  94. Campbell SE (1982) Precambrian endoliths discovered. Nature 299:429–431CrossRefGoogle Scholar
  95. Campbell KA, Farmer JD, Des Marais D (2002) Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2:63–94CrossRefGoogle Scholar
  96. Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473PubMedCrossRefGoogle Scholar
  97. Canfield DE, Thamdrup B (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266:1973–1975PubMedCrossRefGoogle Scholar
  98. Canfield DE, Poulton SW, Knoll AH et al (2008) Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321:949–952PubMedCrossRefGoogle Scholar
  99. Canfield DE, Sørensen KB, Oren A (2004) Biogeochemistry of a gypsum‐encrusted microbial ecosystem. Geobiology 2:133–150CrossRefGoogle Scholar
  100. Cantrell SA, Duval-Pérez L (2012) Microbial mats: an ecological niche for fungi. Front Microbiol 3:1–7Google Scholar
  101. Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen‐associated bacterial communities. FEMS Microbiol Ecol 57:484–495PubMedCrossRefGoogle Scholar
  102. Carpenter K (2005) Experimental investigation of the role of bacteria in bone fossilization. N Jb Geol Palaont Mh 11:83–94Google Scholar
  103. Cavalier-Smith T (2002) The neomuran origin of archaebacteria: the negibacteria root of the universal tree and bacteria megaclassification. Int J Syst Microbiol 52:7–76CrossRefGoogle Scholar
  104. Chan CS, De Stasio G, Welch SA et al (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658PubMedCrossRefGoogle Scholar
  105. Châtellier X, West MM, Rose J et al (2004) Characterization of iron-oxides formed by oxidation of ferrous ions in the presence of various bacterial species and inorganic ligands. Geomicrobiol J 21:99–112CrossRefGoogle Scholar
  106. Child AM (1995) Towards and understanding of the microbial decomposition of archaeological bone in the burial environment. J Archaeol Sci 22:165–174CrossRefGoogle Scholar
  107. Chin K, Eberth DA, Schweitzer MH et al (2003) Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. Palaios 18:286–294PubMedCrossRefGoogle Scholar
  108. Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Routledge, LondonCrossRefGoogle Scholar
  109. Cleland TP, Stoskopf MK, Schweitzer MH (2011) Histological, chemical, and morphological reexamination of the “heart” of a small Late Cretaceous Thescelosaurus. Naturwissenschaften 98:203–211PubMedCrossRefGoogle Scholar
  110. Clemett SJ, Dulay MT, Gilette JS et al (1998) Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons (PAHs) in the Martian meteorite ALH 84001. Faraday Discuss 109:417–436PubMedCrossRefGoogle Scholar
  111. Clemett SJ, Thomas-Keprta KL, Shimmin J et al (2002) Crystal morphology of MV-1 magnetite. Am Mineral 87:1727–1730CrossRefGoogle Scholar
  112. Cloud P (1973) Pseudofossils: a plea for caution. Geology 1:123–127CrossRefGoogle Scholar
  113. Cloud PE Jr, Hagen H (1965) Electron microscopy of the Gunflint microflora. Proc Nat Acad Sci USA 54:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  114. Cloud P, Morrison K (1979) On microbial contaminants, micropseudofossils, and the oldest records of life. Precambrian Res 9:81–91CrossRefGoogle Scholar
  115. Coleman ML, Raiswell R (1995) Source of carbonate and origin of zonation in pyritiferous carbonate concretions; evaluation of a dynamic model. Am J Sci 295:282–308CrossRefGoogle Scholar
  116. Collins MJ, Nielsen-Marsh CM, Hiller J (2002) The survival of organic matter in bone: a review. Archaeometry 44:383–394CrossRefGoogle Scholar
  117. Collinson ME, Manchester SR, Wilde V et al (2010) Fruit and seed floras from exceptionally preserved biotas in the European Paleogene. Bull Geosci 85:155–162CrossRefGoogle Scholar
  118. Conti MA, Morsilli M, Nicosia U et al (2005) Jurassic dinosaur footprints from southern Italy: footprints as indicators of constraints in paleogeographic interpretation. Palaios 20:534–550CrossRefGoogle Scholar
  119. Cosmidis J, Benzerara K, Menguy N et al (2013) Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms. Chem Geol 359:10–22CrossRefGoogle Scholar
  120. Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745CrossRefGoogle Scholar
  121. Costa JL, Paulsrud P, Lindblad P (1999) Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microb Ecol 28:85–91CrossRefGoogle Scholar
  122. Courties C, Vaquer A, Troussellier M et al (1994) Smallest eukaryotic organism. Nature 370:255CrossRefGoogle Scholar
  123. Cunningham JA, Thomas CW, Bengtson S et al (2012a) Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proc R Soc B: Biol Sci 279:2369–2376CrossRefGoogle Scholar
  124. Cunningham JA, Thomas CW, Bengtson S et al (2012b) Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils. Proc R Soc B: Biol Sci 279:1857–1864CrossRefGoogle Scholar
  125. Currah RS, Hambleton S, Smreciu A (1988) Mycorrhizae and mycorrhizal fungi of Calypso bulbosa. Am J Bot 75:739–752CrossRefGoogle Scholar
  126. Currie PJ, Sarjeant WA (1979) Lower Cretaceous dinosaur footprints from the Peace River Canyon, British Columbia, Canada. Palaeogeogr Palaeoclim Palaeoecol 28:103–115CrossRefGoogle Scholar
  127. Daniel JC, Chin K (2010) The role of bacterially mediated precipitation in the permineralization of bone. Palaios 25:507–516CrossRefGoogle Scholar
  128. Darroch SA, Laflamme M, Schiffbauer JD et al (2012) Experimental formation of a microbial death mask. Palaios 27:293–303CrossRefGoogle Scholar
  129. Dauphas N, Van Zuilen M, Wadhwa M et al (2004) Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science 306:2077–2080PubMedCrossRefGoogle Scholar
  130. De Gregorio BT, Sharp TG, Flynn GJ et al (2009) Biogenic origin for Earth’s oldest putative microfossils. Geology 37:631–634CrossRefGoogle Scholar
  131. Deacon JW (2006) Fungal biology. Wiley-Blackwell, OxfordGoogle Scholar
  132. Decho AW, Kawaguchi T (2003) Extracellular polymers (EPS) and calcification within modern marine stromatolites. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Springer, Dordrecht, pp 227–240CrossRefGoogle Scholar
  133. Deming JW, Reysenbach AL, Macko SA et al (1997) Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: bone‐colonizing bacteria and invertebrate endosymbionts. Microsc Res Tech 37:162–170PubMedCrossRefGoogle Scholar
  134. Diaz MR, van Norstrand JD, Eberli GP et al (2014) Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology 12:231–49. doi: 10.1111/gbi.12079 PubMedCrossRefGoogle Scholar
  135. Dotzler N, Krings M, Taylor TN et al (2006) Germination shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert. Mycol Progr 5:178–184CrossRefGoogle Scholar
  136. Dotzler N, Walker C, Krings M et al (2009) Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert. Mycol Progr 8:9–18CrossRefGoogle Scholar
  137. Droser ML, Gehling JG, Jensen SR (2006) Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeogr Palaeoclim Palaeoecol 232:131–147CrossRefGoogle Scholar
  138. Duck LJ, Glikson M, Golding SD et al (2007) Microbial remains and other carbonaceous forms from the 3.24 Ga Sulphur Springs black smoker deposit, Western Australia. Precambrian Res 154:205–220CrossRefGoogle Scholar
  139. Dunlop JSR, Milne VA, Groves DI et al (1978) A new microfossils assemblage from the Archean of Western Australia. Nature 274:676–678CrossRefGoogle Scholar
  140. Dunn KA, McLean RJC, Upchurch GR et al (1997) Enhancement of leaf fossilization potential by bacterial biofilms. Geology 25:1119–1122CrossRefGoogle Scholar
  141. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438PubMedCrossRefGoogle Scholar
  142. Dupraz C, Reid RP, Braissant O et al (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162CrossRefGoogle Scholar
  143. Dutkiewicz A, Volk H, George SC et al (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology 34:437–440CrossRefGoogle Scholar
  144. Efremov IA (1940) Taphonomy: a new branch of paleontology. Pan-Am Geol 74:81–93Google Scholar
  145. Eglinton G, Logan GA, Ambler RP et al (1991) Molecular preservation [and discussion]. Phil Trans R Soc Lond B 333:315–328CrossRefGoogle Scholar
  146. El Albani A, Bengtson S, Canfield DE et al (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104PubMedCrossRefGoogle Scholar
  147. Fang HW, Shang QQ, Chen MH et al (2014) Changes in the critical erosion velocity for sediment colonized by biofilm. Sedimentology 61:648–659CrossRefGoogle Scholar
  148. Fedo CM, Whitehouse MJ (2002) Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296:1448–1452PubMedCrossRefGoogle Scholar
  149. Fernando AA, Currah RS (1995) Leptodontidium orchidicola (Mycelium radicis atrovirens complex): aspects of its conidiogenesis and ecology. Mycotaxon 54:287–294Google Scholar
  150. Fernández N, Messuti MI, Fontenla S (2008) Arbuscular mycorrhizas and dark septate fungi in Lycopodium paniculatum (Lycopodiaceae) and Equisetum bogotense (Equisetaceae) in a Valdivian temperate forest of Patagonia, Argentina. Am Fern J 98:117–127CrossRefGoogle Scholar
  151. Ferris FG (1993) Microbial biomineralization in natural environments. Earth Sci 47:233–250Google Scholar
  152. Ferris FG, Fyfe WS, Beveridge TJ (1987) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol 63:225–232CrossRefGoogle Scholar
  153. Ferris FG, Fyfe WS, Beveridge TJ (1988) Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16:149–152CrossRefGoogle Scholar
  154. Fisk MR, Giovannoni SJ, Thorseth IH (1998) Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281:978–979PubMedCrossRefGoogle Scholar
  155. Fletcher BJ, Beerling DJ, Chaloner WG (2004) Stable carbon isotopes and the metabolism of the terrestrial Devonian organism Spongiophyton. Geobiology 2:107–119CrossRefGoogle Scholar
  156. Fliegel D, Kosler J, McLoughlin N et al (2010) In-situ dating of the Earth’s oldest trace fossil at 3.34 Ga. Earth Planet Sci Lett 299:290–298CrossRefGoogle Scholar
  157. Flood BE, Bailey JV, Biddle JF (2014) Horizontal gene transfer and the rock record: comparative genomics of phylogenetically distant bacteria that induce wrinkle structure formation in modern sediments. Geobiology 12:119–132PubMedCrossRefGoogle Scholar
  158. Folk RL (1993) SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J Sed Petrol 63:990–999Google Scholar
  159. Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals: Reviews in Mineralogy 35. Mineralogical Society of America, Washington, pp 161–180Google Scholar
  160. Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54:95–114CrossRefGoogle Scholar
  161. Fregenal-Martínez MA, Buscalioni AD (2010) A holistic approach to the palaeoecology of Las Hoyas Konservat-Lagerstätte (La Huérguina Formation, Lower Cretaceous, Iberian Ranges, Spain). J Iberian Geol 36:297–326CrossRefGoogle Scholar
  162. Frey E, Martill DM, Buchy MC (2003) A new species of tapejarid pterosaur with soft–tissue head crest. Geol Soc Lond Spec Publ 217:65–72CrossRefGoogle Scholar
  163. Furnes H, Muehlenbachs K (2003) Bioalteration recorded in ophiolitic pillow lavas. Geol Soc Lond Spec Publ 218:415–426CrossRefGoogle Scholar
  164. Furnes H, Staudigel H, Thorseth IH et al (2001) Bioalteration of basaltic glass in the oceanic crust. Geochem Geophys Geosyst 2:1049. doi: 10.1029/2000GC000150 Google Scholar
  165. Furnes H, Banerjee NR, Muehlenbachs K et al (2004) Early life recorded in Archean pillow lavas. Science 304:578–581PubMedCrossRefGoogle Scholar
  166. Furnes H, Banerjee NR, Staudigel H et al (2007) Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocks. Precambrian Res 158:156–176CrossRefGoogle Scholar
  167. Gabbott SE (1998) Taphonomy of the Ordovician Soom Shale Lagerstätte: an example of soft tissue preservation in clay minerals. Palaeontology 41:631–668Google Scholar
  168. Gabbott SE, Norry MJ, Aldridge RJ et al (2001) Preservation of fossils in clay minerals; a unique example from the Upper Ordovician Soom Shale, South Africa. Proc Yorkshire Geol Polytech Soc 53:237–244CrossRefGoogle Scholar
  169. Gabbott SE, Xian-Guang H, Norry MJ et al (2004) Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32:901–904CrossRefGoogle Scholar
  170. Gaines RR, Briggs DE, Yuanlong Z (2008) Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology 36:755–758CrossRefGoogle Scholar
  171. Gaines RR, Kennedy MJ, Droser ML (2005) A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeogr Palaeoclim Palaeoecol 220:193–205CrossRefGoogle Scholar
  172. Gall JC, Bernier P, Gaillard C et al (1985) Influence du développement d'un voile algaire sur la sédimentation et la taphonomie des calcaires lithographiques. Exemple du gisement de Cerin (Kimméridgien supérieur, Jura méridional français). Mém Phys Chim Sci l'univers, Sci de la Terre 301:547–552Google Scholar
  173. Gall JC (1990) Les voiles microbiens. Leur contribution à la fossilisation des organismes au corps mou. Lethaia 23:21–28CrossRefGoogle Scholar
  174. Gaines RR, Hammarlund EU, Hou X, Qi C, Gabbott SE, Zhao Y, Peng J, Canfield DE (2012) Mechanism for Burgess Shale-type preservation. Proc Natl Acad Sci USA 109:5180–5184PubMedPubMedCentralCrossRefGoogle Scholar
  175. Garcia Massini JL (2007) A glomalean fungus from the Permian of Antarctica. Int J Plant Sci 168:673–678CrossRefGoogle Scholar
  176. Garcia-Ruiz JM, Hyde ST, Carnerup AM et al (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197PubMedCrossRefGoogle Scholar
  177. Gargas A, DePriest PT, Grube M et al (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495PubMedCrossRefGoogle Scholar
  178. Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks. Palaios 14:40–57CrossRefGoogle Scholar
  179. Gehling JG, Droser ML, Jensen SR et al (2005) Ediacara organisms: relating form to function. In: Evolving form and function: fossils and development, Symposium Proceedings, Peabody Museum of Natural History, Yale University, New Haven, p 43–67Google Scholar
  180. Gehrig H, Schüssler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the glomales: evidence by SSU rRNA Analysis. J Mol Evol 4:371–81Google Scholar
  181. Gehring AU, Kind J, Charilaou M et al (2011) The detection of magnetotactic bacteria and magnetofossils by means of magnetic anisotropy. Earth Planet Sci Lett 309:113–117CrossRefGoogle Scholar
  182. George SC, Volk H, Dutkiewicz A et al (2008) Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years. Geochim Cosmochim Acta 72:844–870CrossRefGoogle Scholar
  183. Gerdes G, Claes M, Dunajtschik-Piewak K et al (1993) Contribution of microbial mats to sedimentary surface structures. Facies 29:61–74CrossRefGoogle Scholar
  184. German TN, Podkovyrov VN (2009) New insights into the nature of the Late Riphean Eosolenides. Precambrian Res 173:154–162CrossRefGoogle Scholar
  185. Giovannoni SJ, Fisk MR, Mullins TD et al (1996) Genetic evidence for endolithic microbial life colonizing basaltic glass/seawater interfaces. In: Alt JC, Kinoshita H, Stokking LB et al (eds) Proceedings of the Ocean Drilling Program. Sci Results 148:207–214Google Scholar
  186. Glikson M, Duck LJ, Golding SD et al (2008) Microbial remains in some earliest Earth rocks: comparison with a potential modern analogue. Precambrian Res 164:187–200CrossRefGoogle Scholar
  187. Golden DC, Ming DW, Schwandt CS et al (2000) An experimental study on kinetically-driven precipitation of Ca-Mg-Fe carbonates from solution: implications for the low temperature formation of carbonates in Martian meteorite Allan Hills 84001. Meteorit Planet Sci 35:457–465CrossRefGoogle Scholar
  188. Golden DC, Ming DW, Morris RV et al (2004) Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am Mineral 89:681–695CrossRefGoogle Scholar
  189. Golubic S, Barghoorn ES (1977) Interpretation of microbial fossils with special reference to the Precambrian. In: Flügel E (ed) Fossil algae: recent results and developments. Springer, Berlin, pp 1–14CrossRefGoogle Scholar
  190. Golubic S, Hofmann HJ (1976) Comparison of modern and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J Paleontol 50:1074–1092Google Scholar
  191. Golubic S, Knoll AH (1993) Prokaryotes. In: Lipps JH (ed) Fossil prokaryotes and protists. Blackwell, Boston, pp 51–76Google Scholar
  192. Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sed Petrol 51:475–478Google Scholar
  193. Gorbushina AA, Krumbein WE (2000) Subaerial microbial mats and their effects on soil and rock. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 161–170CrossRefGoogle Scholar
  194. Grasby SE (2003) Naturally precipitating vaterite (μ-CaCO3) spheres: unusual carbonates formed in an extreme environment. Geochim Cosmochim Acta 67:1659–1666CrossRefGoogle Scholar
  195. Grey K, Williams IR (1990) Problematic bedding-plane markings from the Middle Proterozoic Manganese Supergroup, Bangemall Basin, Western Australia. Precambrian Res 46:307–327CrossRefGoogle Scholar
  196. Grey K, Yochelson EL, Fedonkin MA et al (2010) Horodyskia williamsii new species, a Mesoproterozoic macrofossil from Western Australia. Precambrian Res 180:1–17CrossRefGoogle Scholar
  197. Grimes ST, Brock F, Rickard D et al (2001) Understanding fossilization: experimental pyritization of plants. Geology 29:123–126CrossRefGoogle Scholar
  198. Grimes ST, Davies KL, Butler IB et al (2002) Fossil plants from the Eocene London Clay: the use of pyrite textures to determine the mechanism of pyritization. J Geol Soc 159:493–501CrossRefGoogle Scholar
  199. Grotzinger JP, Rothman DH (1996) An abiotic model for stomatolite morphogenesis. Nature 383:423–425CrossRefGoogle Scholar
  200. Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85CrossRefGoogle Scholar
  201. Grube M, Kroken S (2000) Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycol Res 104:1284–1294CrossRefGoogle Scholar
  202. Grube M, Winka K (2002) Progress in understanding the evolution and classification of lichenized ascomycetes. Mycologist 16:67–76CrossRefGoogle Scholar
  203. Han T-M, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1 billion-tear-old Negaunee Iron Formation, Michigan. Science 257:232–235PubMedCrossRefGoogle Scholar
  204. Harper CJ, Taylor TN, Krings M et al (2013) Mycorrhizal symbiosis in the Paleozoic seed fern Glossopteris from Antarctica. Rev Palaeobot Palynol 192:22–31CrossRefGoogle Scholar
  205. Harrington DJ (1996) Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun 64:1885–1891PubMedPubMedCentralGoogle Scholar
  206. Hedges RE (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328CrossRefGoogle Scholar
  207. Helm RF, Huang Z, Edwards D et al (2000) Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc commune DRH-1. J Bacteriol 182:974–982PubMedPubMedCentralCrossRefGoogle Scholar
  208. Hermann TN, Podkovyrov VN (2006) Fungal remains from the Late Riphean. Paleontol J 40:207–214CrossRefGoogle Scholar
  209. Hickman AH, Van Kranendonk MJ (2012) Early Earth evolution: evidence from the 3.5–1.8 Ga geologic history of the Pilbara region of Western Australia. Episodes 35:283–297Google Scholar
  210. Hippler D, Hu N, Steiner M et al (2012) Experimental mineralization of crustacean eggs: new implications for the fossilization of Precambrian-Cambrian embryos. Biogeosciences 9:1765–1775CrossRefGoogle Scholar
  211. Hof CH, Briggs DE (1997) Decay and mineralization of mantis shrimps (Stomatopoda; Crustacea); a key to their fossil record. Palaios 12:420–438CrossRefGoogle Scholar
  212. Hofmann HJ (1972) Precambrian remains in Canada: fossils, dubiofossils and pseudofossils. In: Proceedings of the 24th International Geological Congress, Section 1, p 20–30Google Scholar
  213. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada—significance and systematics. J Paleo 50:1040–1073Google Scholar
  214. Hofmann HJ (2000) Archean stromatolites as microbial archives. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 315–327CrossRefGoogle Scholar
  215. Hofmann HJ, Grey K, Hickman AH et al (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262CrossRefGoogle Scholar
  216. Honegger R (2009) Lichen-forming fungi and their photobionts. In: Deising H (ed) The Mycota, vol 5, Plant relationships. Springer, Berlin, pp 305–333CrossRefGoogle Scholar
  217. Honegger R, Axe L, Edwards D (2013a) Bacterial epibionts and endolichenic actinobacteria and fungi in the Lower Devonian lichen Chlorolichenomycites salopensis. Fungal Biol 117:512–518PubMedCrossRefGoogle Scholar
  218. Honegger R, Edwards D, Axe L (2013b) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 197:264–275PubMedCrossRefGoogle Scholar
  219. Horodyski RJ (1980) Middle Proterozoic shale-facies microbiota from the Lower Belt Supergroup, Little Belt Mountains, Montana. J Paleo 54:649–663Google Scholar
  220. Horodyski RJ (1982) Problematic bedding-plane markings from the Middle Proterozoic Appekunny Argillite, Belt Supergroup, Northwestern Montana. J Paleo 56:882–889Google Scholar
  221. Horodyski RJ, Knauth LP (1994) Life on land in the Precambrian. Science 263:494–498PubMedCrossRefGoogle Scholar
  222. House CH, Schopf JW, McKeegan KD et al (2000) Carbon isotopic composition of individual Precambrian microfossils. Geology 28:707–710PubMedCrossRefGoogle Scholar
  223. Huldtgren T, Cunningham JA, Yin C et al (2011) Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science 334:1696–1699PubMedCrossRefGoogle Scholar
  224. Humphreys CP, Franks PJ, Rees M et al (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103PubMedCrossRefGoogle Scholar
  225. Iniesto M, Lopez-Archilla AI, Fregenal-Martínez M et al (2013) Involvement of microbial mats in delayed decay: an experimental essay on fish preservation. Palaios 28:56–66CrossRefGoogle Scholar
  226. Jans MME, Nielsen-Marsh CM, Smith CI et al (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31:87–95CrossRefGoogle Scholar
  227. Javaux EJ (2007) Patterns of diversification in early eukaryotes. Carnets de Geologie/Notebooks on Geology 2007(01):38–42Google Scholar
  228. Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69PubMedCrossRefGoogle Scholar
  229. Javaux EJ, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94PubMedCrossRefGoogle Scholar
  230. Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132CrossRefGoogle Scholar
  231. Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938PubMedCrossRefGoogle Scholar
  232. Jumpponen A (2001) Dark septate endophytes–are they mycorrhizal? Mycorrhiza 11:207–211CrossRefGoogle Scholar
  233. Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root‐colonizing fungi. New Phytol 140:295–310CrossRefGoogle Scholar
  234. Jung HG, Deetz DA (1993) Cell wall lignification and degradability. In: Jung HG, Buxton DR, Hatfield RD et al (eds) Forage cell wall structure and digestibility. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, p 315–346Google Scholar
  235. Kalanetra KM, Joye SB, Sunser NR et al (2005) Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environ Microbiol 7:1451–1460PubMedCrossRefGoogle Scholar
  236. Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Z Dtsch Geol Ges 60:68–125Google Scholar
  237. Karatygin IV, Snigirevskaya NS, Vikulin SV (2009) The most ancient terrestrial lichen Winfrenatia reticulata: a new find and new interpretation. Paleontol J 43:107–114CrossRefGoogle Scholar
  238. Kaye TG, Gaugler G, Sawlowicz Z (2008) Dinosaurian soft tissues interpreted as bacterial biofilms. PLoS One 3, e2808PubMedPubMedCentralCrossRefGoogle Scholar
  239. Kazmierczak J (1979) The eukaryotic nature of Eosphaera-like ferriferous structures from the Precambrian Gunflint Iron Formation, Canada: a comparative study. Precambrian Res 9:1–22CrossRefGoogle Scholar
  240. Kazmierczak J, Kempe S (2006) Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafo’ou Island, Tonga. Naturwissenschaften 93:119–126PubMedCrossRefGoogle Scholar
  241. Kellner AW (1996a) Reinterpretation of a remarkably well preserved pterosaur soft tissue from the Early Cretaceous of Brazil. J Vert Paleo 16:718–722CrossRefGoogle Scholar
  242. Kellner AWA (1996b) Fossilized theropod soft tissue. Nature 379:32CrossRefGoogle Scholar
  243. Kennard JM, James NP (1986) Thrombolites and stromatolites; two distinct types of microbial structures. Palaios 1:492–503CrossRefGoogle Scholar
  244. Kirkland BL, Lynch FL, Rahnis MA et al (1999) Alternative origins for nannobacteria-like objects in calcite. Geology 27:347–350CrossRefGoogle Scholar
  245. Kiyokawa S, Ito T, Ikehara M et al (2006) Middle Archean volcano-hydrothermal sequence: bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. Geol Soc Am Bull 118:3–22CrossRefGoogle Scholar
  246. Klein C, Beukes NJ, Schopf JW (1987) Filamentous microfossils in the early Proterozoic Transvaal Super group: their morphology, significance, and paleoenviron mental setting. Precambrian Res 36:81–94CrossRefGoogle Scholar
  247. Kluge M, Mollenhauer D, Wolf E et al (2003) The Nostoc-Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 19–30CrossRefGoogle Scholar
  248. Klymiuk AA, Stockey RA, Rothwell GW (2011) The first organismal concept for an extinct species of Pinaceae: Pinus arnoldii Miller. Int J Plant Sci 172:294–313CrossRefGoogle Scholar
  249. Klymiuk AA, Harper CJ, Moore DM et al (2013a) Reinvestigating Carboniferous “actinomycetes”: authigenic formation of biomimetic carbonates provides insight into early diagenesis of permineralized plants. Palaios 28:80–92CrossRefGoogle Scholar
  250. Klymiuk AA, Taylor TN, Taylor EL et al (2013b) Paleomycology of the Princeton Chert II. Dark-septate fungi in the aquatic angiosperm Eorhiza arnoldii indicate a diverse assemblage of root-colonizing fungi during the Eocene. Mycologia 105:1100–1109PubMedCrossRefGoogle Scholar
  251. Knight TK, Bingham PS, Lewis RD, Savrda CE (2011) Feathers of the Ingersoll shale, Eutaw Formation (Upper Cretaceous), eastern Alabama: the largest collection of feathers from North American Mesozoic rocks. Palaios 26:364–376CrossRefGoogle Scholar
  252. Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622–627PubMedCrossRefGoogle Scholar
  253. Knoll AH (2012) The fossil record of microbial life. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 297–314CrossRefGoogle Scholar
  254. Knoll AH (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb Perspect Biol 6:a016121PubMedPubMedCentralCrossRefGoogle Scholar
  255. Knoll AH, Awramik SM (1983) Ancient microbial ecosystems. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 287–315Google Scholar
  256. Knoll AH, Bambach RK (2000) Directionality in the history of life: diffusion fom the left wall or repeated scaling on the right? In: Erwin DH, Wing SL (eds) Deep time. Paleobiology’s perspective. The Paleontological Society. Supplement to Palaios 26:1–14Google Scholar
  257. Knoll AH, Barghoorn ES (1974) Ambient pyrite in Precambrian chert: new evidence and a theory. Proc Nat Acad Sci USA 71:2329–2331PubMedPubMedCentralCrossRefGoogle Scholar
  258. Knoll AH, Barghoorn ES (1975) Precambrian eukaryotic organisms: a reassessment of the evidence. Science 190:52–54CrossRefGoogle Scholar
  259. Knoll AH, Barghoorn ES (1977) Microfossils showing cell division from the Swaziland System of South Africa. Science 198:396–398PubMedCrossRefGoogle Scholar
  260. Knoll AH, Golubic S (1979) Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Res 10:115–151CrossRefGoogle Scholar
  261. Knoll AH, Golubic S, Green J et al (1986) Organically preserved microbial endoliths from the late Proterozoic of East Greenland. Nature 321:856PubMedCrossRefGoogle Scholar
  262. Knoll AH, Javaux EJ, Hewitt D et al (2006) Eukaryotic organisms in Proterozoic oceans. Phil Trans R Soc Lond B 361:1023–1038CrossRefGoogle Scholar
  263. Knoll AH, Canfield DE, Konhauser KO (eds) (2012) Fundamentals of geobiology. Wiley-Blackwell, ChichesterGoogle Scholar
  264. Knoll AH, Worndle S, Kah LC (2013) Covariance of microfossil assemblages and microbialite textures across an upper Mesoproterozoic carbonate platform. Palaios 28:453–470CrossRefGoogle Scholar
  265. Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Sci Rev 43:91–121CrossRefGoogle Scholar
  266. Konhauser KO, Riding R (2012) Bacterial biomineralization. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 105–130CrossRefGoogle Scholar
  267. Konhauser KO, Fisher QJ, Fyfe WS et al (1998) Authigenic mineralization and detrital clay binding by freshwater biofilms: the Brahmani River, India. Geomicrobiol J 15:209–222CrossRefGoogle Scholar
  268. Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolisms. Elements 7:89–93CrossRefGoogle Scholar
  269. Kremer B, Kazmierczak J (2005) Cyanobacterial mats from Silurian black radiolarian cherts: phototrophic life at the edge of darkness? J Sediment Res 75:897–906CrossRefGoogle Scholar
  270. Kremer B, Kazmierczak J, Lukomska-Kowalczyk M et al (2012a) Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo'ou's caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12:535–548PubMedPubMedCentralCrossRefGoogle Scholar
  271. Kremer B, Owocki K, Królikowska A et al (2012b) Mineral microbial structures in a bone of the Late Cretaceous dinosaur Saurolophus angustirostris from the Gobi Desert, Mongolia—a Raman spectroscopy study. Palaeogeogr Palaeoclim Palaeoecol 358:51–61CrossRefGoogle Scholar
  272. Krings M, Taylor TN, Hass H et al (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657PubMedCrossRefGoogle Scholar
  273. Krings M, Hass H, Kerp H et al (2009) Endophytic cyanobacteria in a 400-million-yr-old land plant: a scenario for the origin of a symbiosis? Rev Palaeobot Palynol 153:62–69CrossRefGoogle Scholar
  274. Krings M, Taylor TN, Dotzler N (2012) Fungal endophytes as a driving force in land plant evolution: evidence from the fossil record. In: Southworth D (ed) Biocomplexity of plant-fungal interactions. Wiley, New York, pp 5–28CrossRefGoogle Scholar
  275. Krumbein WE (1979) Calcification by bacteria and algae. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming element. Elsevier, Amsterdam, pp 47–68CrossRefGoogle Scholar
  276. Laflamme M, Schiffbauer JD, Narbonne GM et al (2011) Microbial biofilms and the preservation of the Ediacara biota. Lethaia 44:203–213CrossRefGoogle Scholar
  277. Laflamme M, Schiffbauer JD, Narbonne GM (2012) Deep-water microbially induced sedimentary structures (MISS) in deep time: the Ediacaran fossil Ivesheadia. In: Noffke NK, Chafetz H (eds) Microbial mats in siliciclastic depositional systems through time. SEPM Special Publication 101:111–123Google Scholar
  278. Lamb DM, Awramik SM, Chapman DJ et al (2009) Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China. Precambrian Res 173:93–104CrossRefGoogle Scholar
  279. Lang BF, Burger G (2012) Mitochondrial and eukaryotic origins: a critical review. In: Marechal-Drouard L (ed) Mitochondrial genome evolution. Elsevier—Academic, Amsterdam, pp 1–20CrossRefGoogle Scholar
  280. Lawson AC, Czernuszka JT (1998) Collagen-calcium phosphate composites. J Eng Med 212:413–425CrossRefGoogle Scholar
  281. LePage B, Currah R, Stockey R et al (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410–410PubMedCrossRefGoogle Scholar
  282. Lepland A, Arrhenius G, Cornell D (2002) Apatite in early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precambrian Res 118:221–241CrossRefGoogle Scholar
  283. Lepland A, Van Zuilen MA, Philippot P (2011) Fluid-deposited graphite and its geobiological implications in early Archean gneiss from Akilia, Greenland. Geobiology 9:2–9PubMedCrossRefGoogle Scholar
  284. Lepot K, Benzerara K, Brown GE Jr et al (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nat Geosci 1:118–121CrossRefGoogle Scholar
  285. Lepot K, Philippot P, Benzerara K et al (2009a) Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt. Geobiology 7:393–402PubMedCrossRefGoogle Scholar
  286. Lepot K, Benzerara K, Rividi N et al (2009b) Organic matter heterogeneities in 2.72 Ga stromatolites: alteration versus preservation by sulfur incorporation. Geochim Cosmochim Acta 73:6579–6599CrossRefGoogle Scholar
  287. Lerosey-Aubril R, Hegna TA, Kier C et al (2012) Controls on gut phosphatisation: the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah). PLoS One 7, e32934PubMedPubMedCentralCrossRefGoogle Scholar
  288. Léveillé RJ, Fyfe WS, Longstaffe FJ (2000) Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves. Chem Geol 169:339–355CrossRefGoogle Scholar
  289. Li Q, Gao KQ, Vinther J et al (2010a) Plumage color patterns of an extinct dinosaur. Science 327:1369–1372PubMedCrossRefGoogle Scholar
  290. Li C, Love GD, Lyons TW et al (2010b) A stratified redox model for the Ediacaran Ocean. Science 328:80–83PubMedCrossRefGoogle Scholar
  291. Liebig K (2001) Bacteria. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 253–256CrossRefGoogle Scholar
  292. Lin JP (2007) Preservation of the gastrointestinal system in Olenoides (Trilobita) from the Kaili Biota (Cambrian) of Guizhou, China. Mem Assoc Australasian Palaeontol 33:179Google Scholar
  293. Liu Y, Simon JD (2003) Isolation and biophysical studies of natural eumelanins: applications of imaging technologies and ultrafast spectroscopy. Pigment Cell Res 16:606–618PubMedCrossRefGoogle Scholar
  294. Liu AG, Mcilroy D, Antcliffe JB, Brasier MD (2011) Effaced preservation in the Ediacara biota and its implications for the early macrofossil record. Palaeontology 54:607–630CrossRefGoogle Scholar
  295. Lockley MG (1986) The paleobiological and paleoenvironmental importance of dinosaur footprints. Palaios 1:37–47CrossRefGoogle Scholar
  296. Lockley MG (1991) Tracking dinosaurs: a new look at an ancient world. Cambridge University Press, CambridgeGoogle Scholar
  297. Loeblich TR (1970) Morphology, ultrastructure and distribution of Palaeozoic acritarchs. In: Proceedings of the North American Palaeontological Convention G, p 705–788Google Scholar
  298. Lovley DR, Stolz JF, Nord GL et al (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254CrossRefGoogle Scholar
  299. Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments: a review. Appl Environ Microbiol 51:683–689PubMedPubMedCentralGoogle Scholar
  300. Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390PubMedCrossRefGoogle Scholar
  301. Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940PubMedCrossRefGoogle Scholar
  302. Lutzoni F, Kauff F, Cox CJ et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480PubMedCrossRefGoogle Scholar
  303. Maciá‐Vicente JG, Rosso LC, Ciancio A et al (2009) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol 155:391–401CrossRefGoogle Scholar
  304. MacLean LC, Tyliszczak T, Gilbert PU, Zhou D, Pray TJ, Onstott TC, Southam G (2008) A high‐resolution chemical and structural study of framboidal pyrite formed within a low‐temperature bacterial biofilm. Geobiology 6:471–480PubMedCrossRefGoogle Scholar
  305. Manning PL, Morris PM, McMahon A et al (2009) Mineralized soft–tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA). Proc R Soc B: Biol Sci 276:3429–3437CrossRefGoogle Scholar
  306. Marshall CP, Javaux EJ, Knoll AH et al (2005) Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology. Precambrian Res 138:208–224CrossRefGoogle Scholar
  307. Marshall CP, Edwards HGM, Jehlicka J (2010) Understanding the application of Raman spectroscopy to the detection of traces of life. Astrobiology 10:229–243PubMedCrossRefGoogle Scholar
  308. Marshall CP, Emry JR, Olcott Marshall A (2011) Haematite pseudomicrofossils present in the 3.5-billion-year-old Apex Chert. Nat Geosci 4:240–243CrossRefGoogle Scholar
  309. Martill DM (1987) Prokaryote mats replacing soft tissues in Mesozoic marine reptiles. Modern Geol 11:265–269Google Scholar
  310. Martill DM (1988) Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology 31:1–18Google Scholar
  311. Martill DM (1989) The Medusa effect: instantaneous fossilization. Geol Today 5:201–205CrossRefGoogle Scholar
  312. Martill DM (1991) Organically preserved dinosaur skin: taphonomic and biological implications. Modern Geol 16:61–68Google Scholar
  313. Martill DM (1990) Macromolecular resolution of fossilized muscle tissues from an elopomorph fish. Nature 346:171–172CrossRefGoogle Scholar
  314. Martill DM, Unwin DM (1989) Exceptionally well preserved pterosaur wing membrane from the Cretaceous of Brazil. Nature 340:138–140CrossRefGoogle Scholar
  315. Martill DM, Unwin DM (1997) Small spheres in fossil bones: blood corpuscles or diagenetic products? Palaeontology 40:619–624Google Scholar
  316. Martill DM, Brito PM, Washington-Evans J (2008) Mass mortality of fishes in the Santana Formation (Lower Cretaceous, ?Albian) of northeast Brazil. Cretceous Res 29:649–658CrossRefGoogle Scholar
  317. Martin D, Briggs DE, Parkes RJ (2004) Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils. J Geol Soc 161:735–738CrossRefGoogle Scholar
  318. Martin D, Briggs DE, Parkes RJ (2005) Decay and mineralization of invertebrate eggs. Palaios 20:562–572CrossRefGoogle Scholar
  319. Marty D, Strasser A, Meyer CA (2009) Formation and taphonomy of human footprints in microbial mats of present-day tidal-flat environments: implications for the study of fossil footprints. Ichnos 16:127–142CrossRefGoogle Scholar
  320. Matsunaga KK, Stockey RA, Tomescu AM (2013) Honeggeriella complexa gen. et sp. nov., a heteromerous lichen from the Lower Cretaceous of Vancouver Island (British Columbia, Canada). Am J Bot 100:450–459PubMedCrossRefGoogle Scholar
  321. Mayr G, Manegold A (2013) Can ovarian follicles fossilize? Nature 499, E1PubMedCrossRefGoogle Scholar
  322. McCollum TM (2003) Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochim Cosmochim Acta 67:311–317CrossRefGoogle Scholar
  323. McDermid AS, McKee AS, Marsh PD (1988) Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50. Infect Immun 56:1096–1100PubMedPubMedCentralGoogle Scholar
  324. McElhiney J, Lawton LA, Leifert C (2001) Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon 39:1411–1420PubMedCrossRefGoogle Scholar
  325. McGregor VR, Mason B (1977) Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amitsoq gneisses, West Greenland. Am Mineral 62:887–904Google Scholar
  326. McKay DS, Gibson EK Jr, Thomas-Keprta KL et al (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH 84001. Science 273:924–930PubMedCrossRefGoogle Scholar
  327. McLoughlin N, Wacey D, Brasier MD et al (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26PubMedCrossRefGoogle Scholar
  328. McLoughlin N, Wilson LA, Brasier MD (2008) Growth of synthetic stromatolites and wrinkle structures in the absence of microbes—implications for the early fossil record. Geobiology 6:95–105PubMedCrossRefGoogle Scholar
  329. McLoughlin N, Furnes H, Banerjee NR et al (2009) Ichnotaxonomy of microbial trace fossils in volcanic glass. J Geol Soc 166:159–169CrossRefGoogle Scholar
  330. McLoughlin N, Grosch EG, Kilburn MR et al (2012) Sulfur isotope evidence for Paleoarchean subseafloor biosphere, Barberton, South Africa. Geology 40:1031–1034CrossRefGoogle Scholar
  331. McNamara M, Orr PJ, Kearns SL et al (2010) Organic preservation of fossil musculature with ultracellular detail. Proc R Soc B: Biol Sci 277:423–427CrossRefGoogle Scholar
  332. McNamara ME, Orr PJ, Kearns SL et al (2009) Soft-tissue preservation in Miocene frogs from Libros, Spain: insights into the genesis of decay microenvironments. Palaios 24:104–117CrossRefGoogle Scholar
  333. Millay MA, Eggert DA (1974) Microgametophyte development in the Paleozoic seed fern family Callistophytaceae. Am J Bot 60:1067–1075CrossRefGoogle Scholar
  334. Moczydlowska M, Willman S (2009) Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities. Precambrian Res 173:27–38CrossRefGoogle Scholar
  335. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59PubMedCrossRefGoogle Scholar
  336. Moorbath S, O’Nions RK, Pankhurst RJ (1973) Early Archaean age for the Isua iron formation, West Greenland. Nature 240:138–139CrossRefGoogle Scholar
  337. Morris CE, Monier J, Jacques M (1997) Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol 63:1570–1576PubMedPubMedCentralGoogle Scholar
  338. Morris PA, Wentworth SJ, Allen CC et al (1999) Methods for determining biogenicity in Archean and other ancient rocks. In: Lunar and Planetary Science Conference XXX,
  339. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefGoogle Scholar
  340. Munnecke A, Servais T, Vachard D (2001) Halysis Hoeg, 1932—a problematic Cyanophyceae: new evidence from the Silurian of Gotland (Sweden). N Jb Geol Palaont Mh 7:21–42Google Scholar
  341. Nelsen MP, Lücking R, Grube M et al (2009) Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Stud Mycol 64:135–144PubMedPubMedCentralCrossRefGoogle Scholar
  342. Newsham KK (2011) A meta‐analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793PubMedCrossRefGoogle Scholar
  343. Niklas KJ (1983) Organelle preservation and protoplast partitioning in fossil angiosperm leaf tissues. Am J Bot 70:543–548CrossRefGoogle Scholar
  344. Niklas KJ, Newman SA (2013) The origins of multicellular organisms. Evol Dev 15:41–52PubMedCrossRefGoogle Scholar
  345. Niklas KJ, Brown RM Jr, Santos R (1985) Ultrastructural states of preservation in Clarkia angiosperm leaf tissues: implications on modes of fossilization. In: Smiley CJ (ed) Late Cenozoic History of the Pacific Northwest: interdisciplinary studies of the Clarkia beds of Northern Idaho. Pacific Division of the AAAS, California Academy of Sciences, San Francisco, p 143–159Google Scholar
  346. Niklas KJ, Cobb ED, Crawford DR (2013) The evo-devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity. Evol Dev 15:466–474PubMedCrossRefGoogle Scholar
  347. Nisbet EG (1980) Archean stromatolites and the search for the earliest life. Nature 284:395–396CrossRefGoogle Scholar
  348. Noffke N (2009) The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth-Sci Rev 96:173–180CrossRefGoogle Scholar
  349. Noffke N (2010) Microbial mats in sandy deposits from the Archean Era to today. Springer, New YorkGoogle Scholar
  350. Noffke N, Awramik SM (2013) Stromatolites and MISS—differences between relatives. GSA Today 23:4–9CrossRefGoogle Scholar
  351. Noffke N, Chafetz H (eds) (2012) Microbial mats in siliciclastic depositional systems through time. SEPM Special Publicartion no. 101. Society for Sedimentary Geology, TulsaGoogle Scholar
  352. Noffke N, Gerdes G, Klenke T et al (1996) Microbially induced sedimentary structures—examples from modern sediments of siliciclastic tidal flats. Zb Geol Palaont 1:307–316Google Scholar
  353. Noffke N, Gerdes G, Klenke T et al (2001) Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656CrossRefGoogle Scholar
  354. Noffke N, Hazen R, Nhleko N (2003) Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology 31:673–676CrossRefGoogle Scholar
  355. Noffke N, Eriksson KA, Hazen RM et al (2006) A new window into Early Archean life: microbial mats in Earths oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34:253–256CrossRefGoogle Scholar
  356. Noffke N, Christian D, Wacey D et al (2013a) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13:1103–1124PubMedPubMedCentralCrossRefGoogle Scholar
  357. Noffke N, Decho AW, Stoodley P (2013b) Slime through time: the fossil record of prokaryote evolution. Palaios 28:1–5CrossRefGoogle Scholar
  358. O’Brien NR, Meyer HW, Reilly K et al (2002) Microbial taphonomic processes in the fossilization of insects and plants in the late Eocene Florissant Formation, Colorado. Rocky Mtn Geol 37:1–11CrossRefGoogle Scholar
  359. Oehler DZ (1976) Transmission electron microscopy of organic microfossils from the late Precambrian Bitter Springs Formation, Australia: techniques and survey of preserved ultrastructure. J Paleo 50:90–106Google Scholar
  360. Oehler DZ (1977) Pyrenoid-like structures in late Precambrian algae from the Bitter Springs Formation of Australia. J Paleontol 51:885–901Google Scholar
  361. Ohtomo Y, Kakegawa T, Ishida A et al (2014) Evidence for biogenic graphite in early Archean Isua metasedimentary rocks. Nat Geosci 7:25–28CrossRefGoogle Scholar
  362. Olcott Marshall A, Jehlicka J, Rouzaud JN et al (2014) Multiple generations of carbonaceous material deposited in Apex chert by basin-scale pervasive hydrothermal fluid flow. Gondwana Res 25:284–289CrossRefGoogle Scholar
  363. Orr PJ, Benton MJ, Briggs DE (2003) Post-Cambrian closure of the deep-water slope-basin taphonomic window. Geology 31:769–772CrossRefGoogle Scholar
  364. Orr PJ, Briggs DE, Kearns SL (1998) Cambrian Burgess Shale animals replicated in clay minerals. Science 281:1173–1175PubMedCrossRefGoogle Scholar
  365. Page A, Gabbott SE, Wilby PR et al (2008) Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology 36:855–858CrossRefGoogle Scholar
  366. Pang K, Tang Q, Schiffbauer JD et al (2013) The nature and origin of nucleus‐like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11:499–510PubMedGoogle Scholar
  367. Papineau D, De Gregorio BT, Cody GD et al (2010) Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland I: petrographic and spectroscopic characterization. Geochim Cosmochim Ac 74:5862–5883CrossRefGoogle Scholar
  368. Pasteris JD, Wopenka B (2003) Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3:727–738PubMedCrossRefGoogle Scholar
  369. Peach BN, Horne J, Gunn W et al (1907) The Geological Structure of the Northwest Highlands of Scotland. Memoirs of the Geological Survey of Great Britain 1907:1–668Google Scholar
  370. Peat CJ, Muir MD, Plumb KA et al (1978) Proterozoic microfossils from the Roper Group, Northern Territory, Australia. BMR J Aus Geol Geophys 3:1–17Google Scholar
  371. Peckmann J, Goedert JL (2005) Geobiology of ancient and modern methane-seeps. Palaeogeogr Palaeoclim Palaeoecol 227:1–5CrossRefGoogle Scholar
  372. Pecoits E, Konhauser KO, Aubet NR, Heaman LM, Veroslavsky G, Stern RA, Gingras MK (2012) Bilaterian burrows and grazing behavior at >585 million years ago. Science 336:1693–1696PubMedCrossRefGoogle Scholar
  373. Peng Y, Bao H, Yuan X (2009) New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res 168:223–232CrossRefGoogle Scholar
  374. Peterson EB (2000) An overlooked fossil lichen (Lobariaceae). Lichenologist 32:298–300CrossRefGoogle Scholar
  375. Petrovich R (2001) Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities. Am J Sci 301:683–726CrossRefGoogle Scholar
  376. Pflug HD (1978a) Frueheste bisher bekannte Lebewesen Isuasphaera isua n. gen. n. spec. aus der Isua-Serie von Groenland (ca. 3800 Mio. J.). Oberhess naturwiss Z 44:131–145Google Scholar
  377. Pflug HD (1978b) Yeast-like microfossils detected in oldest sediments of the Earth. Naturwissenschaften 65:611–615CrossRefGoogle Scholar
  378. Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280:483–486CrossRefGoogle Scholar
  379. Pinheiro FL, Horn BL, Schultz CL et al (2012) Fossilized bacteria in a Cretaceous pterosaur headcrest. Lethaia 45:495–499CrossRefGoogle Scholar
  380. Pinti D, Mineau R, Clement V (2013) Comment on “Biogenicity of Earth’s oldest fossils: a resolution of the controversy” by J. William Schopf and and Anatoliy B. Kudryavtsev, Gondwana Research 22 (2012), 761–771. Gondwana Res 23:1652–1653CrossRefGoogle Scholar
  381. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. BioSystems 6:153–164PubMedCrossRefGoogle Scholar
  382. Planavsky NJ, Asael D, Hofmann A et al (2014) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7:283–286CrossRefGoogle Scholar
  383. Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714CrossRefGoogle Scholar
  384. Poinar GO, Peterson EB, Platt JL (2000) Fossil Parmelia in new world amber. Lichenologist 32:263–269CrossRefGoogle Scholar
  385. Pons ML, Quitte G, Fujii T et al (2011) Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proc Nat Acad Sci USA 108:17639–17643PubMedPubMedCentralCrossRefGoogle Scholar
  386. Poortinga AT, Bos R, Norde W et al (2002) Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep 47:1–32CrossRefGoogle Scholar
  387. Popa R, Kinkle BK, Badescu A (2004) Pyrite framboids as biomarkers for iron-sulfur systems. Geomicrobiol J 21:193–206CrossRefGoogle Scholar
  388. Pósfai M, Dunin-Borkowski RE (2006) Sulfides in biosystems. Rev Miner Geochem 61:679–714CrossRefGoogle Scholar
  389. Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One 8, e65576PubMedPubMedCentralCrossRefGoogle Scholar
  390. Raff EC, Villinski JT, Turner FR, Donoghue PC, Raff RA (2006) Experimental taphonomy shows the feasibility of fossil embryos. Proc Natl Acad Sci USA 103:5846–5851PubMedPubMedCentralCrossRefGoogle Scholar
  391. Raff EC, Andrews ME, Turner FR et al (2013) Contingent interactions among biofilm‐forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evol Dev 15:243–256PubMedCrossRefGoogle Scholar
  392. Raff EC, Schollaert KL, Nelson DE et al (2008) Embryo fossilization is a biological process mediated by microbial biofilms. Proc Nat Acad Sci USA 105:19360–19365PubMedPubMedCentralCrossRefGoogle Scholar
  393. Rai AN (1990) Handbook of symbiotic cyanobacteria. CRC, Boca Raton, FLGoogle Scholar
  394. Raiswell R, Whaler K, Dean S et al (1993) A simple three-dimensional model of diffusion-with-precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals. Mar Geol 113:89–100CrossRefGoogle Scholar
  395. Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulfide deposit. Nature 405:676–679PubMedCrossRefGoogle Scholar
  396. Rasmussen B, Fletcher IR, Brocks JJ et al (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104PubMedCrossRefGoogle Scholar
  397. Rasmussen B, Blake TS, Fletcher IR et al (2009) Evidence for microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments. Geology 37:423–426CrossRefGoogle Scholar
  398. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  399. Reid RP, Visscher PT, Decho AW et al (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992PubMedCrossRefGoogle Scholar
  400. Reis RR, Huang TD, Roberts EM et al (2013) Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains. Nature 496:210–214CrossRefGoogle Scholar
  401. Reitner J, Quéric N-V, Arp G (eds) (2011) Advances in stromatolite geobiology. Springer, BerlinGoogle Scholar
  402. Remy W, Taylor TN, Hass H et al (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Nat Acad Sci USA 91:11841–11843PubMedPubMedCentralCrossRefGoogle Scholar
  403. Retallack GJ (2013) Ediacaran life on land. Nature 493:89–92PubMedCrossRefGoogle Scholar
  404. Retallack GJ (1994) Were the Ediacaran fossils lichens? Paleobiology 20:523–544Google Scholar
  405. Rice CM, Trewin NH, Anderson LI (2002) Geological setting of the Early Devonian Rhynie cherts, Aberdeenshire, Scotland: an early terrestrial hot spring system. J Geol Soc 159:203–214CrossRefGoogle Scholar
  406. Riding R (2011) The nature of stromatolites: 3,500 million years of history and one century of research. In: Reitner J, Quéric N-V, Arp G (eds) Advances in stromatolite geobiology. Springer, Berlin, pp 29–74CrossRefGoogle Scholar
  407. Rikkinen J (2003) Calicioid lichens from European Tertiary amber. Mycologia 95:1032–1036PubMedCrossRefGoogle Scholar
  408. Rikkinen J, Poinar GO (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. J Exp Bot 59:1007–1011PubMedCrossRefGoogle Scholar
  409. Rikkinen J, Poinar GO Jr (2002) Fossilised Anzia (Lecanorales) lichen-forming Ascomycota from European Tertiary amber. Mycol Res 106:984–990CrossRefGoogle Scholar
  410. Roberts JA, Kenward PA, Fowle DA et al (2013) Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc Nat Acad Sci USA 110:14540–14545PubMedPubMedCentralCrossRefGoogle Scholar
  411. Roberts TA, Mead GC (1985) Involvement of intestinal anaerobes in the spoilage of red meats, poultry and fish. Soc Appl Bacteriol 13:333–349Google Scholar
  412. Rodriguez RJ, White JF Jr, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  413. Roedder E (1981) Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither? Nature 293:459–462CrossRefGoogle Scholar
  414. Roh Y, Zhang C-L, Vali H et al (2003) Biogeochemical and environmental factors in Fe biomineralization: magnetite and siderite formation. Clays Clay Min 51:83–95CrossRefGoogle Scholar
  415. Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676PubMedCrossRefGoogle Scholar
  416. Rothwell GW, Scheckler SE, Gillespie WH (1989) Elkinsia gen. nov., a late Devonian gymnosperm with cupulate ovules. Bot Gaz 158:170–189CrossRefGoogle Scholar
  417. Rothwell GW, Wyatt SE, Tomescu AMF (2014) Plant evolution at the interface of paleontology and developmental biology: an organism-centered paradigm. Am J Bot 101:899–913PubMedCrossRefGoogle Scholar
  418. Russell JA, Brady AL, Cardman Z et al (2014) Prokaryote populations of extant microbialites along a depth gradient in Pavilion Lake, British Columbia, Canada. Geobiology 12:250. doi: 10.1111/gbi.12082 PubMedCrossRefGoogle Scholar
  419. Sagemann J, Bale SJ, Briggs DE et al (1999) Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach. Geochim Cosmochim Acta 63:1083–1095CrossRefGoogle Scholar
  420. Saikkonen K, Faeth SH, Helander M et al (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343CrossRefGoogle Scholar
  421. Samuelsson J, Dawes PR, Vidal G (1999) Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland. Precambrian Res 96:1–23CrossRefGoogle Scholar
  422. San Antonio JD, Schweitzer MH, Jensen ST et al (2011) Dinosaur peptides suggest mechanisms of protein survival. PLoS One 6, e20381PubMedPubMedCentralCrossRefGoogle Scholar
  423. Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318CrossRefGoogle Scholar
  424. Schidlowski M (2000) Carbon isotopes and microbial sediments. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 84–95CrossRefGoogle Scholar
  425. Schieber J, Riciputi L (2005) Pyrite and marcasite coated grains in the Ordovician Winnipeg Formation, Canada: an intertwined record of surface conditions, stratigraphic condensation, geochemical “reworking”, and microbial activity. J Sediment Res 75:907–920CrossRefGoogle Scholar
  426. Schieber J, Bose PK, Eriksson PG et al (2007) Atlas of microbial mat features preserved within the siliciclastic rock record. Atlases in Geosciences. Elsevier, AmsterdamGoogle Scholar
  427. Schiffbauer JD, Laflamme M (2012) Lagerstätten through time: a collection of exceptional preservational pathways from the terminal Neoproterozoic through today. Palaios 27:275–278CrossRefGoogle Scholar
  428. Schmid G, Zeitvogel F, Hao L et al (2014) 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microsopy tomography approaches. Geobiology 12:340–361PubMedCrossRefGoogle Scholar
  429. Schneider DA, Bickford ME, Cannon WF et al (2002) Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Can J Earth Sci 39:999–1012CrossRefGoogle Scholar
  430. Schopf JM (1975) Modes of fossil preservation. Rev Palaeobot Palynol 20:27–53CrossRefGoogle Scholar
  431. Schopf JW (1968) Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. J Paleo 42:651–6881999Google Scholar
  432. Schopf JW (1993) Microfossils of the Early Archean apex chert: new evidence of the antiquity of life. Science 260:640–646PubMedCrossRefGoogle Scholar
  433. Schopf JW (1999) Fossils and pseudofossils: lessons from the hunt for early life on Earth. In: Size limits of very small microorganisms Conference. National Academy Press, Washington, DC, pp. 88–93Google Scholar
  434. Schopf JW (2006) Fossil evidence of Archean life. Phil Trans R Soc B 361:869–885PubMedPubMedCentralCrossRefGoogle Scholar
  435. Schopf JW (2009) Emergence of Precambrian paleobiology: a new field of science. In: Sepkoski D, Ruse M (eds) The paleobiological revolution. Chicago University Press, Chicago, pp 89–110CrossRefGoogle Scholar
  436. Schopf JW, Blacic JM (1971) New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. J Paleo 45:925–961Google Scholar
  437. Schopf JW, Klein C (1992) Times of origin and earliest evidence of major biologic groups. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, New York, pp 587–593CrossRefGoogle Scholar
  438. Schopf JW, Kudryavtsev AB (2012) Biogenicity of Earth’s earliest fossils: a resolution of the controversy. Gondwana Res 22:761–771CrossRefGoogle Scholar
  439. Schopf JW, Packer BM (1987) Early Archean (3.3- billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73PubMedCrossRefGoogle Scholar
  440. Schopf JW, Sovietov YK (1976) Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostratigraphy. Science 193:143–146PubMedCrossRefGoogle Scholar
  441. Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, New Jersey, pp 214–239Google Scholar
  442. Schopf JW, Kudryavtsev AB, Agresti DG et al (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76PubMedCrossRefGoogle Scholar
  443. Schopf JW, Tripathi AB, Kudryavtsev AB (2006) Three-dimensional confocal optical imagery of Precambrian microscopic organisms. Astrobiology 6:1–16PubMedCrossRefGoogle Scholar
  444. Schopf JW, Kudryavtsev AB, Czaja AD et al (2007) Evidence of Archean life: stromatolites and microfossils. Precambrian Res 158:141–155CrossRefGoogle Scholar
  445. Schopf JW, Kudryavtsev AB, Sugitani K et al (2010) Precambrian microbe-like pseudofossils: a promising solution to the problem. Precambrian Res 179:191–205CrossRefGoogle Scholar
  446. Schopf JW, Kudryavtsev AB, Tripathi AB et al (2011) Three-dimensional morphological (CLSM) and chemical (Raman) imagery of cellularly mineralized fossils. In: Allison PA, Bottjer D (eds) Taphonomy. Springer, Netherlands, pp 457–486Google Scholar
  447. Schulz HN, Schulz HD (2005) Large sulfur bacteria and the formation of phosphorite. Science 307:416–418PubMedCrossRefGoogle Scholar
  448. Schulz HN, Brinkhoff T, Ferdelman TG et al (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495PubMedCrossRefGoogle Scholar
  449. Schüssler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Esser K, Lemke PA, Hock B (eds) Fungal associations. Springer, Berlin, pp 151–161CrossRefGoogle Scholar
  450. Schweitzer MH, Wittmeyer JL, Horner JR et al (2005) Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science 307:1952–1955PubMedCrossRefGoogle Scholar
  451. Schweitzer MH, Wittmeyer JL, Horner JR (2007) Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present. Proc R Soc B: Biol Sci 274:183–197CrossRefGoogle Scholar
  452. Schwendemann AB, Taylor TN, Taylor EL, Krings M (2010) Organization, anatomy, and fungal endophytes of a Triassic conifer embryo. Am J Bot 97:1873–1883PubMedCrossRefGoogle Scholar
  453. Seckbach J, Walsh M (eds) (2009) From fossils to astrobiology. Springer, DordrechtGoogle Scholar
  454. Seilacher A, Reif WE, Westphal F et al (1985) Sedimentological, ecological and temporal patterns of fossil Lagerstatten [and Discussion]. Phil Trans R Soc Lond B 311:5–24CrossRefGoogle Scholar
  455. Semikhatov SM, Gebelein CD, Cloud P et al (1979) Stromatolite morphogenesis—progress and problems. Can J Earth Sci 16:992–1015CrossRefGoogle Scholar
  456. Seong-Joo L, Golubic S (1998) Multi-trichomous cyanobacterial microfossils from the Mesoproterozoic Gaoyuzhuang Formation, China: paleoecological and taxonomic implications. Lethaia 31:169–184PubMedCrossRefGoogle Scholar
  457. Sepkoski D, Ruse M (2009) Paleontology at the high table. In: Sepkoski D, Ruse M (eds) The paleobiological revolution. Chicago University Press, Chicago, pp 1–11CrossRefGoogle Scholar
  458. Sergeev VN (2009) The distribution of microfossil assemblages in Proterozoic rocks. Precambrian Res 173:212–222CrossRefGoogle Scholar
  459. Shapiro RS (2000) A comment on the systematic confusion of thrombolites. Palaios 15:166–169CrossRefGoogle Scholar
  460. Shapiro RS, Spangler E (2009) Bacterial fossil record in whale-falls: petrographic evidence of microbial sulfate reduction. Palaeogeogr Palaeoclim Palaeocol 274:196–203CrossRefGoogle Scholar
  461. Sinninghe Damsté JS, de Leeuw JW (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Org Geochem 16:1077–1101CrossRefGoogle Scholar
  462. Skawina A (2010) Experimental decay of gills in freshwater bivalves as a key to understanding their preservation in Upper Triassic lacustrine deposits. Palaios 25:215–220CrossRefGoogle Scholar
  463. Southam G, Donald R (1999) A structural comparison of bacterial microfossils vs. ‘nanobacteria’ and nanofossils. Earth-Sci Rev 48:251–264CrossRefGoogle Scholar
  464. Southam G, Donald R, Röstad A et al (2001) Pyrite discs in coal: evidence for fossilized bacterial colonies. Geology 29:47–50CrossRefGoogle Scholar
  465. Spicer RA (1977) The pre-depositional formation of some leaf impressions. Palaeontology 20:907–912Google Scholar
  466. Spicer RA (1981) The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England. US Geol Surv Prof Paper 1143:1–77Google Scholar
  467. Staudigel H, Yayanos A, Chastain R et al (1998) Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett 164:233–244CrossRefGoogle Scholar
  468. Staudigel H, Furnes H, McLoughlin N et al (2008) 3.5 billion years of glass bioalteration: volcanic rocks as basis for microbial life? Earth-Sci Rev 89:156–176CrossRefGoogle Scholar
  469. Steele A, McCubbin FM, Fries M et al (2012) A reduced organic Carbon component in Martian basalts. Science 337:212–215PubMedCrossRefGoogle Scholar
  470. Stenroos SK, DePriest PT (1998) SSU rDNA phylogeny of cladoniiform lichens. Am J Bot 85:1548–1559PubMedCrossRefGoogle Scholar
  471. Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. Cambridge University Press, New YorkGoogle Scholar
  472. Stockey RA, Rothwell GW, Addy HD et al (2001) Mycorrhizal association of the extinct conifer Metasequoia milleri. Mycol Res 105:202–205CrossRefGoogle Scholar
  473. Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–29Google Scholar
  474. Stoodley P, Sauer K, Davies DG et al (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209PubMedCrossRefGoogle Scholar
  475. Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69:347–352CrossRefGoogle Scholar
  476. Straub KL, Schünhuber WA, Bucholz-Cleven BEE (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21:371–378CrossRefGoogle Scholar
  477. Strother PK, Battison L, Brasier MD et al (2011) Earth’s earliest non-marine eukaryotes. Nature 473:505–509PubMedCrossRefGoogle Scholar
  478. Strullu-Derrien C, Kenrick P, Pressel S et al (2014) Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant-fungus symbioses. New Phytol 203:964–979PubMedCrossRefGoogle Scholar
  479. Sugitani K, Grey K, Allwood A (2007) Diverse microstructures from Archaean chert from the Mount Goldsworthy–Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossils, or pseudofossils? Precambrian Res 158:228–262CrossRefGoogle Scholar
  480. Sugitani K, Lepot K, Nagaoka T et al (2010) Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley Pool Formation, in the Pilbara Craton, Western Australia. Astrobiology 10:899–920PubMedCrossRefGoogle Scholar
  481. Sugitani K, Mimura K, Nagaoka T et al (2013) Microfossil assemblage from the 3400 Ma Strelley Pool Formation in the Pilbara Craton, Western Australia: results form a new locality. Precambrian Res 226:59–74CrossRefGoogle Scholar
  482. Summons RE, Lincoln SA (2012) Biomarkers: informative molecules for studies in geobiology. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 269–296CrossRefGoogle Scholar
  483. Tandon KK, Kumar S (1977) Discovery of annelid and arthropod remains from Lower Vindhyan rocks (Precambrian) of central India. Geophytology 7:126–130Google Scholar
  484. Taylor TN, Taylor EL (2000) The Rhynie chert ecosystem: a model for understanding fungal interactions. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 31–47Google Scholar
  485. Taylor T, Hass H, Kerp H (1997) A cyanolichen from the Lower Devonian Rhynie chert. Am J Bot 84:992–992PubMedCrossRefGoogle Scholar
  486. Taylor TN, Hass H, Remy W et al (1995a) The oldest fossil lichen. Nature 378:244CrossRefGoogle Scholar
  487. Taylor TN, Remy W, Hass H et al (1995b) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573CrossRefGoogle Scholar
  488. Taylor TN, Krings M, Dotzler N (2012) Fungal endophytes in Astromyelon-type (Sphenophyta, Equisetales, Calamitaceae) roots from the Upper Pennsylvanian of France. Rev Palaeobot Palynol 171:9–18CrossRefGoogle Scholar
  489. Taylor TN, Krings M, Taylor EL (2015) Fossil fungi. Academic, San DiegoGoogle Scholar
  490. Thomas-Keprta KL, Clemett SJ, Bazylinski DA et al (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Nat Acad Sci USA 98:2164–2169PubMedPubMedCentralCrossRefGoogle Scholar
  491. Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18:995–998CrossRefGoogle Scholar
  492. Thulborn T (1990) Dinosaur tracks. Chapman and Hall, LondonCrossRefGoogle Scholar
  493. Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552PubMedCrossRefGoogle Scholar
  494. Timlin JA, Carden A, Morris MD et al (2000) Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal Chem 72:2229–2236PubMedCrossRefGoogle Scholar
  495. Tomescu AMF, Rothwell GW, Mapes G (2001) Lyginopteris royalii sp. nov. from the Upper Mississippian of North America. Rev Paleobot Palynol 116:159–173CrossRefGoogle Scholar
  496. Tomescu AMF, Rothwell GW, Honegger R (2006) Cyanobacterial macrophytes in an Early Silurian (Llandovery) continental biota: Passage Creek, lower Massanutten Sandstone, Virginia, USA. Lethaia 39:329–338CrossRefGoogle Scholar
  497. Tomescu AMF, Honegger R, Rothwell GW (2008) Earliest fossil record of bacterial-cyanobacterial mat consortia: the early Silurian Passage Creek biota (440 Ma, Virginia, USA). Geobiology 6:120–124PubMedCrossRefGoogle Scholar
  498. Tomescu AMF, Rothwell GW, Honegger R (2009) A new genus and species of filamentous microfossil of cyanobacterial affinity from Early Silurian fluvial environments (lower Massanutten Sandstone, Virginia, USA). Bot J Linn Soc 160:284–289CrossRefGoogle Scholar
  499. Toporski JKW, Steele A, Westall F et al (2002) Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochim Cosmochim Acta 66:1773–1791CrossRefGoogle Scholar
  500. Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanisms of the glass-palagonite transformation. Geochim Cosmochim Acta 55:731–749CrossRefGoogle Scholar
  501. Thorseth IH, Furnes H, Tumyr O (1995) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160CrossRefGoogle Scholar
  502. Treiman AH (2003a) Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. Astrobiology 3:369–392PubMedCrossRefGoogle Scholar
  503. Treiman AH (2003b) Traces of ancient Martian life in meteorite ALH84001: an outline of status in late 2003. Lunar and Planetary Institute, Houston, Google Scholar
  504. Trichet J, Defarge C (1995) Non-biologically supported organomineralization. Bull Inst Oceanograph Monaco 14:203–236Google Scholar
  505. Tyler SA, Barghoorn ES (1954) Occurrence of structurally preserved plants in pre-Cambrian rocks of the Canadian Shield. Science 119:606–608PubMedCrossRefGoogle Scholar
  506. Tyler SA, Barghoorn ES (1963) Ambient pyrite grains in Precambrian cherts. Am J Sci 261:424–432CrossRefGoogle Scholar
  507. Ueno Y, Isozaki Y, Yurimoto H et al (2001a) Carbon isotopic signatures of individual Archean microfossils(?) from Western Australia. Int Geol Rev 43:196–212CrossRefGoogle Scholar
  508. Ueno Y, Maruyama S, Isozaki Y et al (2001b) Early Archean (ca. 3.5 Ga) microfossils and 13C-depleted carbonaceous matter in the North Pole area, Western Australia: field occurrence and geochemistry. In: Nakashima S, Maruyama S, Brack A et al (eds) Geochemistry and the origin of life. Universal Academy Press, Tokyo, pp 203–236Google Scholar
  509. Van Lith Y, Warthmann R, Vasconcelos C et al (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology 50:237–245CrossRefGoogle Scholar
  510. Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Sci Rev 74:197–240CrossRefGoogle Scholar
  511. Van Kranendonk MJ, Smithies RH, Hickman AH et al (2007) Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38CrossRefGoogle Scholar
  512. van Zuilen MA, Lepland A, Teranes J et al (2003) Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Res 126:331–348CrossRefGoogle Scholar
  513. Vecht A, Ireland TG (2000) The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology. Geochim Cosmochim Acta 64:2719–2725PubMedCrossRefGoogle Scholar
  514. Vinther J, Briggs DE, Prum RO et al (2008) The colour of fossil feathers. Biol Lett 4:522–525PubMedPubMedCentralCrossRefGoogle Scholar
  515. Vinther J, Briggs DE, Clarke J et al (2010) Structural coloration in a fossil feather. Biol Lett 6:128–131PubMedPubMedCentralCrossRefGoogle Scholar
  516. Visscher PT, Beukema J, van Gemerden H (1991) In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnol Oceanogr 36:1476–1480CrossRefGoogle Scholar
  517. Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeogr Palaeoclim Palaeoecol 219:87–100CrossRefGoogle Scholar
  518. Wacey D (2009) Early life on Earth: a practical guide. Springer, New YorkCrossRefGoogle Scholar
  519. Wacey D (2012) Earliest evidence for life on Earth: and Australia perspective. Aust J Earth Sci 59:153–166CrossRefGoogle Scholar
  520. Wacey D, McLoughlin N, Green OR et al (2006) The ~3.4 billion-year-old Strelley Pool Sandstone: a new window into early life on Earlt. Int J Astrobiol 5:333–342CrossRefGoogle Scholar
  521. Wacey D, Kilburn MR, McLoughlin N et al (2008) Use of NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c. 3400 Ma sandstone. J Geol Soc 165:43–53CrossRefGoogle Scholar
  522. Wacey D, Kilburn MR, Saunders M et al (2011a) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702CrossRefGoogle Scholar
  523. Wacey D, Saunders M, Brasier MD et al (2011b) Earliest microbially mediated pyrite oxidation in ~3.4 billion-year-old sediments. Earth Planet Sci Let 301:393–402CrossRefGoogle Scholar
  524. Waldbauer JR, Sherman LS, Sumner DY et al (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47CrossRefGoogle Scholar
  525. Walsh MM (1992) Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res 54:271–293PubMedCrossRefGoogle Scholar
  526. Walsh MM, Westall F (2003) Archean biofilms preserved in the Swaziland Supergroup, South Africa. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Kluwer, Dordrecht, pp 307–316CrossRefGoogle Scholar
  527. Walter MR (1983) Archean stromatolites: evidence of the Earth's earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 187–213Google Scholar
  528. Walter MR, Oehler JH, Oehler DZ (1976) Megascopic algae 1300 million years old from the Belt Supergroup, Montana: a reinterpretation of Walcott's Helminthoidichnites. J Paleo 50:872–881Google Scholar
  529. Walter MR, Du RL, Horodyski RJ (1990) Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana. Am J Sci 290-A:133–148Google Scholar
  530. Wang B, Yeun LH, Xue JY et al (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525PubMedCrossRefGoogle Scholar
  531. Wang B, Zhao F, Zhang H et al (2012) Widespread pyritization of insects in the Early Cretaceous Jehol Biota. Palaios 27:707–711CrossRefGoogle Scholar
  532. Waterbury JB, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2–44PubMedPubMedCentralGoogle Scholar
  533. Westall F (1999) The nature of fossil bacteria: a guide to the search for extraterrestrial life. J Geophys Res—Planets 104(E7):16437–16451CrossRefGoogle Scholar
  534. Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archean cherts and BIFs of the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330CrossRefGoogle Scholar
  535. Westall F, Boni L, Guerzoni E (1995) The experimental silicification of microorganisms. Palaeontology 38:495–528Google Scholar
  536. Westall F, de Wit MJ, Dann J et al (2001) Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res 106:93–116CrossRefGoogle Scholar
  537. Westall F, de Vries ST, Nijman W et al (2006) The 3.446 Ga “Kitty’s Gap Chert”, an early Archean microbial ecosystem. Geol S Am Special Paper 405:105–131Google Scholar
  538. Wierzchos J, Berlanga M, Ascaso C et al (1996) Micromorphological characterization and lithification of microbial mats from the Ebro Delta (Spain). Int Microbiol 9:289–295Google Scholar
  539. Wilby PR, Briggs DE (1997) Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios 30:493–502CrossRefGoogle Scholar
  540. Wilby PR, Briggs DE, Bernier P et al (1996) Role of microbial mats in the fossilization of soft tissues. Geology 24:787–790CrossRefGoogle Scholar
  541. Wills MA (2001) Disparity vs. diversity. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 495–500CrossRefGoogle Scholar
  542. Wilmeth DT, Dornbos SQ, Isbell JL (2014) Putative domal microbial structures in fluvial siliciclastic facies of the Mesoproterozoic (1.09 Ga) Copper Harbor Conglomerate, Upper Peninsula of Michigan, USA. Geobiology 12:99–108PubMedCrossRefGoogle Scholar
  543. Wilson AS, Dodson HI, Janaway RC, Pollard AM, Tobin DJ (2007) Selective biodegradation in hair shafts derived from archaeological, forensic and experimental contexts. Br J Dermatol 157:450–457PubMedCrossRefGoogle Scholar
  544. Wolfe AP, Csank AZ, Reyes AV et al (2012) Pristine Early Eocene wood buried deeply in kimberlite from northern Canada. PLoS One 7, e45537PubMedPubMedCentralCrossRefGoogle Scholar
  545. Woolhouse HW (1984) The biochemistry and regulation of senescence in chloroplasts. Can J Bot 62:2934–2942CrossRefGoogle Scholar
  546. Wingender J, Neu TR, Flemming HC (2012) Microbial extracellular polymeric substances: characterization, structure and function. Springer Science & Business Media, Heidelberg, 258pGoogle Scholar
  547. Wright DT, Wacey D (2004) Sedimentary dolomite: a reality check. Geol Soc Lond Special Pub 235:65–74CrossRefGoogle Scholar
  548. Wuttke M (1983a) Weichteilerhaltung durch lithifizierte Mikoorganismen bei mittel-eozänen Vertebraten aus dem Ölschiefer der ‘Grube Messel’ bei Darmstadt. Senckenbergiana Lethaea 64:503–527Google Scholar
  549. Wuttke M (1983b) Aktuopaläontologische Studien über den Zerfall von Wirbeltieren: Teil 1, Anura. Senckenbergiana Lethaea 64:529–560Google Scholar
  550. Xiao S, Knoll AH, Kaufman AJ et al (1997) Neoproterozoic fossils in Mesoproterozoic rocks? Chamostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res 84:197–220CrossRefGoogle Scholar
  551. Xiao S, Zhang Y, Knoll AH (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553–558CrossRefGoogle Scholar
  552. Xiao S, Yuan X, Steiner M et al (2002) Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. J Paleo 76:347–376CrossRefGoogle Scholar
  553. Xiao S, Schiffbauer JD, McFadden KA et al (2010) Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation. Earth Planet Sci Lett 297:481–495CrossRefGoogle Scholar
  554. Xiao S, Droser M, Gehling JG et al (2013) Affirming life aquatic for the Ediacara biota in China and Australia. Geology 41:1095–1098CrossRefGoogle Scholar
  555. Yan Y, Liu Z (1993) Significance of eukaryotic organisms in the microfossil flora of Changcheng system. Acta Micropalaeontol Sin 10:167–180Google Scholar
  556. Yin L-M (1997) Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China. Rev Palaeobot Palynol 98:15–25CrossRefGoogle Scholar
  557. Yin Z, Liu P, Li G et al (2014) Biological and taphonomic implications of Ediacaran fossil embryos undergoing cytokinesis. Gondwana Res 25:1019–1026CrossRefGoogle Scholar
  558. Yochelson EL, Fedonkin MA (2000) A new tissue-grade organism 1.5 billion years old from Montana. Proc Biol Soc Washington 113:843–847Google Scholar
  559. Yoshida Y (1962) Nuclear control of chloroplast activity in Elodea leaf cells. Protoplasma 54:476–492CrossRefGoogle Scholar
  560. Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020PubMedCrossRefGoogle Scholar
  561. Zegers TE, de Wit MJ, Dann J, White SH (1998) Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10:250–259CrossRefGoogle Scholar
  562. Zhang F, Kearns SL, Orr PJ et al (2010) Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463:1075–1078PubMedCrossRefGoogle Scholar
  563. Zheng X, O’Connor J, Huchzermeyer F et al (2013) Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature 495:507–511PubMedCrossRefGoogle Scholar
  564. Zhu M, Gehling JG, Xiao S et al (2008) Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology 36:867–870CrossRefGoogle Scholar
  565. Zolotov MY, Shock EL (2000) An abiotic origin for hydrocarbons in the Allan Hills 84001 Martian meteorite through cooling of magmatic and impact-generated gases. Meteorit Planet Sci 35:629–638PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alexandru M. F. Tomescu
    • 1
    Email author
  • Ashley A. Klymiuk
    • 2
  • Kelly K. S. Matsunaga
    • 1
  • Alexander C. Bippus
    • 1
  • Glenn W. K. Shelton
    • 1
  1. 1.Department of Biological SciencesHumboldt State UniversityArcataUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceUSA

Personalised recommendations