Skip to main content

Microbes and the Fossil Record: Selected Topics in Paleomicrobiology

  • Chapter
  • First Online:
Book cover Their World: A Diversity of Microbial Environments

Abstract

The study of microbial fossils involves a broad array of disciplines and covers a vast diversity of topics, of which we review a select few, summarizing the state of the art. Microbes are found as body fossils preserved in different modes and have also produced recognizable structures in the rock record (microbialites, microborings). Study of the microbial fossil record and controversies arising from it have provided the impetus for the assembly and refining of powerful sets of criteria for recognition of bona fide microbial fossils. Different types of fossil evidence concur in demonstrating that microbial life was present in the Archean, close to 3.5 billion years ago. Early eukaryotes also fall within the microbial realm and criteria developed for their recognition date the oldest unequivocal evidence close to 2.0 billion years ago (Paleoproterozoic), but Archean microfossils >3 billion years old are strong contenders for earliest eukaryotes. In another dimension of their contribution to the fossil record, microbes play ubiquitous roles in fossil preservation, from facilitating authigenic mineralization to replicating soft tissue with extracellular polymeric substances, forming biofilms that inhibit decay of biological material, or stabilizing sediment interfaces. Finally, studies of the microbial fossil record are relevant to profound, perennial questions that have puzzled humanity and science—they provide the only direct window onto the beginnings and early evolution of life; and the methods and criteria developed for recognizing ancient, inconspicuous traces of life have yielded an approach directly applicable to the search for traces of life on other worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DG, Duggan PS (2008) Cyanobacteria-bryophyte symbioses. J Exp Bot 59:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13

    Article  Google Scholar 

  • Ahlich K, Sieber TN (2006) The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270

    Article  Google Scholar 

  • Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. J Sed Petrol 37:1163–1178

    Article  CAS  Google Scholar 

  • Allison PA (1988a) The role of anoxia in the decay and mineralization of proteinaceous macro–fossils. Paleobiology 14:139–154

    Article  Google Scholar 

  • Allison PA (1988b) Taphonomy of the Eocene London clay biota. Palaeontology 31:1079–1100

    Google Scholar 

  • Allison PA, Smith CR, Kukert H et al (1991) Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin. Paleobiology 17:78–89

    Article  Google Scholar 

  • Allwood AC, Walter MR, Burch IW et al (2007) 3.4 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res 158:198–227

    Article  CAS  Google Scholar 

  • Alt JC, Mata P (2000) On the role of microbes in the alteration of submarine basaltic glass: a TEM study. Earth Planet Sci Lett 181:301–313

    Article  CAS  Google Scholar 

  • Altermann W, Schopf JW (1995) Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res 75:65–90

    Article  CAS  PubMed  Google Scholar 

  • Altermann W, Kazmierczak J, Oren A et al (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4:147–166

    Article  CAS  Google Scholar 

  • Amano K, Little CT (2005) Miocene whale-fall community from Hokkaido, northern Japan. Palaeogeogr Palaeoclimat Palaeoecol 215:345–356

    Article  Google Scholar 

  • Anders E (1996) Evaluating the evidence for past life on Mars. Science 274:2119–2121

    Article  CAS  PubMed  Google Scholar 

  • Anderson EP, Schiffbauer JD, Xiao S (2011) Taphonomic study of Ediacaran organic–walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology 39:643–646

    Article  Google Scholar 

  • Antcliffe JB, Hancy AD (2013a) Critical questions about early character acquisition—comment on Retallack 2012: Some Ediacaran fossils lived on land. Evol Dev 15:225–227

    Article  PubMed  Google Scholar 

  • Antcliffe JB, Hancy AD (2013b) Reply to Retallack (2013): Ediacaran characters. Evol Dev 15:389–392

    Article  PubMed  Google Scholar 

  • Antcliffe JB, McLoughlin N (2009) Deciphering fossil evidence for the origin of life and the origin of animals: common challenges in different worlds. In: Seckbach J, Walsh M (eds) From fossils to astrobiology. Springer, Dordrecht, pp 211–229

    Google Scholar 

  • Appel PWU, Moorbath S, Myers JS (2003) Isuasphaera isua (Pflug) revisited. Precambrian Res 126:309–312

    Article  CAS  Google Scholar 

  • Arning ET, Birgel D, Brunner B et al (2009) Bacterial formation of phosphatic laminites off Peru. Geobiology 7:295–307

    Article  CAS  PubMed  Google Scholar 

  • Arning ET, Birgel D, Schulz-Vogt HN et al (2008) Lipid biomarker patterns of phosphogenic sediments from upwelling regions. Geomicrobiol J 25:69–82

    Article  CAS  Google Scholar 

  • Arouri K, Greenwood PF, Walter MR (1999) A possible chlorophycean affinity of some Neoproterozoic acritarchs. Org Geochem 30:1323–1337

    Article  CAS  Google Scholar 

  • Arouri KR, Greenwood PF, Walter MR (2000) Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Org Geochem 31:75–89

    Article  CAS  Google Scholar 

  • Awramik SM (2006) Respect for stromatolites. Nature 441:700–701

    Article  CAS  PubMed  Google Scholar 

  • Awramik SM, Buchheim HP (2009) A giant, Late Archean lake system: the Meentheena Member (Tumbiana Formation; Fortescue Group), Western Australia. Precambrian Res 174:215–240

    Article  CAS  Google Scholar 

  • Awramik SM, Barghoorn ES (1977) The Gunflint microbiota. Precambrian Res 5:121–142

    Article  Google Scholar 

  • Awramik SM, Grey K (2005) Stromatolites: biogenicity, biosignatures, and bioconfusion. In: Gladstone GR, Hoover RB, Levin GV et al. (eds) Astrobiology and Planetary Missions. SPIE Proceedings 5906:1–9

    Google Scholar 

  • Awramik SM, Margulis L (1974) Stromatolite Newslett 2:5

    Google Scholar 

  • Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Nat Acad Sci USA 85:1327–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awramik SM, Schopf JW, Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20:357–374

    Article  Google Scholar 

  • Bailey JV, Joye SB, Kalanetra KM et al (2007) Palaeontology: undressing and redressing Ediacaran embryos (Reply). Nature 446:E10–E11

    Article  CAS  Google Scholar 

  • Banerjee NR, Simonetti A, Furnes H et al (2007) Direct dating of Archean microbial ichnofossils. Geology 35:487–490

    Article  CAS  Google Scholar 

  • Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147:563–577

    Article  CAS  PubMed  Google Scholar 

  • Barrow JR (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247

    Article  CAS  PubMed  Google Scholar 

  • Bartley JK (1996) Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record. Palaios 11:571–586

    Article  Google Scholar 

  • Battison L, Brasier MD (2012) Remarkably preserved prokaryote and eukaryote microfossils within 1 Ga-old lake phosphates of the Torridon Group, NW Scotland. Precambrian Res 196–197:204–217

    Article  CAS  Google Scholar 

  • Baxter RW (1950) Peltastrobus reedae: a new sphenopsid cone from the Pennsylvanian of Indiana. Bot Gaz 112:174–182

    Article  Google Scholar 

  • Bazylinski DA (1996) Controlled biomineralization of magnetic minerals by magnetotactic bacteria. Chem Geol 132:191–198

    Article  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB (2003) Biologically controlled mineralization in prokaryotes. Rev Miner Geochem 54:217–247

    Article  CAS  Google Scholar 

  • Bekker A, Holland HD, Wang P-L et al (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  CAS  PubMed  Google Scholar 

  • Bengtson S, Belivanova V, Rasmussen B et al (2009) The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proc Nat Acad Sci USA 106:7729–7734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beraldi-Campesi H, Garcia-Pichel F (2011) The biogenicity of modern terrestrial roll-up structures and its significance for ancient life on land. Geobiology 9:10–23

    Article  CAS  PubMed  Google Scholar 

  • Beraldi-Campesi H, Farmer JD, Garcia-Pichel F (2014) Modern terrestrial sedimentary biostructures and their fossil analogs in Mesoproterozoic subaerial deposits. Palaios 29:45–54

    Article  Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Ann Rev Microbiol 43:147–171

    Article  CAS  Google Scholar 

  • Bidartondo MI, Read DJ, Trappe JM et al (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Boal D, Ng R (2010) Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria. Paleobiology 36:555–572

    Article  Google Scholar 

  • Bomfleur B, McLoughlin S, Vajda V (2014) Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science 343:1376–1377

    Article  CAS  PubMed  Google Scholar 

  • Boyce CK, Hazen RM, Knoll AH (2002) Non-destructive, in situ, cellular-scale mapping of elemental abundances including organic carbon in permineralized fossils. Proc Nat Acad Sci USA 98:5970–5974

    Article  Google Scholar 

  • Brack-Hanes SD, Vaughn JC (1978) Evidence of Paleozoic chromosomes from lycopod microgametophytes. Science 200:1383–1385

    Article  CAS  PubMed  Google Scholar 

  • Bradley JP, Harvey RP, McSween HY Jr (1997) No ‘nannofossils’ in martian meteorite. Nature 390:454–455

    Article  CAS  PubMed  Google Scholar 

  • Bradley JP, McSween HY Jr, Harvey RP (1998) Epitaxial growth of nanophase magnetite in Martian meteorite ALH 84001: implications for biogenic mineralization. Meteorit Planet Sci 33:765–773

    Article  CAS  PubMed  Google Scholar 

  • Brasier MD, Wacey D (2012) Fossils and astrobiology: new protocols for cell evolution in deep time. Int J Astrobiol 11:217–228

    Article  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP et al (2002) Questioning the evidence for Earth’s oldest fossils. Nature 417:76–81

    Article  Google Scholar 

  • Brasier M, Green O, Lindsay J et al (2004) Earths oldest (~3.5 Ga) fossils and the ‘early eden hypothesis’: questioning the evidence. Origins Life Evol B 34:257–269

    Article  Google Scholar 

  • Brasier M, McLoughlin N, Green O et al (2006) A fresh look at the fossil evidence for Early Archaean cellular life. Phil Trans R Soc B 361:887–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridgewater D, Allaart JH, Schopf JW et al (1981) Microfossil-like objects from the Archean of Greenland: a cautionary note. Nature 289:51–53

    Article  Google Scholar 

  • Briggs DE (1999) Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Phil Trans R Soc Lond B354:7–17

    Article  Google Scholar 

  • Briggs DE (2003a) The role of decay and mineralization in the preservation of soft-bodied fossils. Ann Rev Earth Planet Sci 31:275–301

    Article  CAS  Google Scholar 

  • Briggs DE (2003b) The role of biofilms in the fossilization of non-biomineralized tissues. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Kluwer, Dordrecht, pp 281–290

    Chapter  Google Scholar 

  • Briggs DE, Kear AJ (1993) Fossilization of soft tissue in the laboratory. Science 259:439–1442

    Article  Google Scholar 

  • Briggs DE, Kear AJ (1994) Decay and mineralization of shrimps. Palaios 9:431–456

    Article  Google Scholar 

  • Briggs DE, Wilby PR (1996) The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. J Geol Soc 153:665–668

    Article  CAS  Google Scholar 

  • Briggs DEG, Kear AJ, Martill DM et al (1993) Phosphatization of soft-tissue in experiments and fossils. J Geol Soc 150:1035–1038

    Article  Google Scholar 

  • Briggs DE, Moore RA, Shultz JW et al (2005) Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proc R Soc B: Biol Sci 272:627–632

    Article  Google Scholar 

  • Briggs DE, Wilby PR, Pérez-Moreno BP et al (1997) The mineralization of dinosaur soft tissue in the Lower Cretaceous of Las Hoyas, Spain. J Geol Soc 154:587–588

    Article  Google Scholar 

  • Brock F, Parkes RJ, Briggs DE (2006) Experimental pyrite formation associated with decay of plant material. Palaios 21:499–506

    Article  Google Scholar 

  • Brocks JJ, Logan GA, Buick R et al (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Brocks JJ, Buick R, Logan GA et al (2003a) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67:4289–4319

    Article  CAS  Google Scholar 

  • Brocks JJ, Buick R, Logan GA et al (2003b) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335

    Article  CAS  Google Scholar 

  • Büdel B, Weber B, Kühl M et al (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268

    Article  Google Scholar 

  • Buick R (1984) Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archean stromatolites? Precambrian Res 24:157–172

    Article  Google Scholar 

  • Buick R (1990) Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from the 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5:441–459

    Article  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77

    Article  CAS  PubMed  Google Scholar 

  • Buick R (2001) Life in the Archean. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 13–21

    Chapter  Google Scholar 

  • Buick R (2010) Ancient acritarchs. Nature 463:885–886

    Article  CAS  PubMed  Google Scholar 

  • Buick R (2012) Geobiology of the Archean Eon. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 351–370

    Chapter  Google Scholar 

  • Buick R, Dunlop J (1990) Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37:247–277

    Article  Google Scholar 

  • Buick R, Knoll AH (1999) Acritarchs and microfossils from the Mesoproterozoic Bangemall Group, Northwestern Australia. J Paleontol 73:744–764

    CAS  PubMed  Google Scholar 

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5:161–181

    Article  Google Scholar 

  • Burke C, Steinberg P, Rusch D et al (2011) Bacterial community assembly based on functional genes rather than species. Proc Nat Acad Sci USA 108:14288–14293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burne RV, Moore L (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Buseck PR, Dunin-Borkowski RE, Devouard B et al (2001) Magnetite morphology and life on Mars. Proc Nat Acad Sci USA 98:13490–13495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler IB, Rickard D (2000) Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochim Cosmochim Acta 64:2665–2672

    Article  CAS  Google Scholar 

  • Butterfield NJ (1995) Secular distribution of Burgess‐Shale‐type preservation. Lethaia 28:1–13

    Article  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404

    Article  Google Scholar 

  • Butterfield NJ (2001) Paleobiology of the Late Mesoproterozoic (ca. 1200 Ma) hunting formation, Somerset Island, arctic Canada. Precambrian Res 111:235–256

    Article  CAS  Google Scholar 

  • Butterfield NJ (2002) Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology 28:155–171

    Article  Google Scholar 

  • Butterfield NJ (2005a) Probable Proterozoic fungi. Paleobiology 31:165–182

    Article  Google Scholar 

  • Butterfield NJ (2005b) Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt Formation, arctic Canada. Lethaia 38:155–169

    Article  Google Scholar 

  • Butterfield NJ, Balthasar U, Wilson LA (2007) Fossil diagenesis in the Burgess Shale. Palaeontology 50:537–543

    Article  Google Scholar 

  • Butterfield NJ (2009) Modes of pre-Ediacaran multicellularity. Precambrian Res 173:201–2011

    Article  CAS  Google Scholar 

  • Cai Y, Schiffbauer JD, Hua H et al (2012) Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeogr Palaeoclimat Palaeoecol 326:109–117

    Article  Google Scholar 

  • Callot G, Maurette M, Pottier L et al (1987) Biogenic etching of microfractures in amorphous and crystalline silicates. Nature 328:147–149

    Article  CAS  Google Scholar 

  • Callow RH, Brasier MD (2009) Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models. Earth Sci Rev 96:207–219

    Article  Google Scholar 

  • Campbell SE (1982) Precambrian endoliths discovered. Nature 299:429–431

    Article  Google Scholar 

  • Campbell KA, Farmer JD, Des Marais D (2002) Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2:63–94

    Article  CAS  Google Scholar 

  • Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Thamdrup B (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266:1973–1975

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Poulton SW, Knoll AH et al (2008) Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321:949–952

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Sørensen KB, Oren A (2004) Biogeochemistry of a gypsum‐encrusted microbial ecosystem. Geobiology 2:133–150

    Article  CAS  Google Scholar 

  • Cantrell SA, Duval-Pérez L (2012) Microbial mats: an ecological niche for fungi. Front Microbiol 3:1–7

    Google Scholar 

  • Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen‐associated bacterial communities. FEMS Microbiol Ecol 57:484–495

    Article  CAS  PubMed  Google Scholar 

  • Carpenter K (2005) Experimental investigation of the role of bacteria in bone fossilization. N Jb Geol Palaont Mh 11:83–94

    Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria: the negibacteria root of the universal tree and bacteria megaclassification. Int J Syst Microbiol 52:7–76

    Article  CAS  Google Scholar 

  • Chan CS, De Stasio G, Welch SA et al (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658

    Article  CAS  PubMed  Google Scholar 

  • Châtellier X, West MM, Rose J et al (2004) Characterization of iron-oxides formed by oxidation of ferrous ions in the presence of various bacterial species and inorganic ligands. Geomicrobiol J 21:99–112

    Article  CAS  Google Scholar 

  • Child AM (1995) Towards and understanding of the microbial decomposition of archaeological bone in the burial environment. J Archaeol Sci 22:165–174

    Article  Google Scholar 

  • Chin K, Eberth DA, Schweitzer MH et al (2003) Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. Palaios 18:286–294

    Article  PubMed  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Routledge, London

    Book  Google Scholar 

  • Cleland TP, Stoskopf MK, Schweitzer MH (2011) Histological, chemical, and morphological reexamination of the “heart” of a small Late Cretaceous Thescelosaurus. Naturwissenschaften 98:203–211

    Article  CAS  PubMed  Google Scholar 

  • Clemett SJ, Dulay MT, Gilette JS et al (1998) Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons (PAHs) in the Martian meteorite ALH 84001. Faraday Discuss 109:417–436

    Article  CAS  PubMed  Google Scholar 

  • Clemett SJ, Thomas-Keprta KL, Shimmin J et al (2002) Crystal morphology of MV-1 magnetite. Am Mineral 87:1727–1730

    Article  CAS  Google Scholar 

  • Cloud P (1973) Pseudofossils: a plea for caution. Geology 1:123–127

    Article  Google Scholar 

  • Cloud PE Jr, Hagen H (1965) Electron microscopy of the Gunflint microflora. Proc Nat Acad Sci USA 54:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloud P, Morrison K (1979) On microbial contaminants, micropseudofossils, and the oldest records of life. Precambrian Res 9:81–91

    Article  Google Scholar 

  • Coleman ML, Raiswell R (1995) Source of carbonate and origin of zonation in pyritiferous carbonate concretions; evaluation of a dynamic model. Am J Sci 295:282–308

    Article  CAS  Google Scholar 

  • Collins MJ, Nielsen-Marsh CM, Hiller J (2002) The survival of organic matter in bone: a review. Archaeometry 44:383–394

    Article  CAS  Google Scholar 

  • Collinson ME, Manchester SR, Wilde V et al (2010) Fruit and seed floras from exceptionally preserved biotas in the European Paleogene. Bull Geosci 85:155–162

    Article  Google Scholar 

  • Conti MA, Morsilli M, Nicosia U et al (2005) Jurassic dinosaur footprints from southern Italy: footprints as indicators of constraints in paleogeographic interpretation. Palaios 20:534–550

    Article  Google Scholar 

  • Cosmidis J, Benzerara K, Menguy N et al (2013) Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms. Chem Geol 359:10–22

    Article  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Costa JL, Paulsrud P, Lindblad P (1999) Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microb Ecol 28:85–91

    Article  CAS  Google Scholar 

  • Courties C, Vaquer A, Troussellier M et al (1994) Smallest eukaryotic organism. Nature 370:255

    Article  Google Scholar 

  • Cunningham JA, Thomas CW, Bengtson S et al (2012a) Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proc R Soc B: Biol Sci 279:2369–2376

    Article  Google Scholar 

  • Cunningham JA, Thomas CW, Bengtson S et al (2012b) Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils. Proc R Soc B: Biol Sci 279:1857–1864

    Article  CAS  Google Scholar 

  • Currah RS, Hambleton S, Smreciu A (1988) Mycorrhizae and mycorrhizal fungi of Calypso bulbosa. Am J Bot 75:739–752

    Article  Google Scholar 

  • Currie PJ, Sarjeant WA (1979) Lower Cretaceous dinosaur footprints from the Peace River Canyon, British Columbia, Canada. Palaeogeogr Palaeoclim Palaeoecol 28:103–115

    Article  Google Scholar 

  • Daniel JC, Chin K (2010) The role of bacterially mediated precipitation in the permineralization of bone. Palaios 25:507–516

    Article  Google Scholar 

  • Darroch SA, Laflamme M, Schiffbauer JD et al (2012) Experimental formation of a microbial death mask. Palaios 27:293–303

    Article  Google Scholar 

  • Dauphas N, Van Zuilen M, Wadhwa M et al (2004) Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science 306:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • De Gregorio BT, Sharp TG, Flynn GJ et al (2009) Biogenic origin for Earth’s oldest putative microfossils. Geology 37:631–634

    Article  CAS  Google Scholar 

  • Deacon JW (2006) Fungal biology. Wiley-Blackwell, Oxford

    Google Scholar 

  • Decho AW, Kawaguchi T (2003) Extracellular polymers (EPS) and calcification within modern marine stromatolites. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Springer, Dordrecht, pp 227–240

    Chapter  Google Scholar 

  • Deming JW, Reysenbach AL, Macko SA et al (1997) Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: bone‐colonizing bacteria and invertebrate endosymbionts. Microsc Res Tech 37:162–170

    Article  CAS  PubMed  Google Scholar 

  • Diaz MR, van Norstrand JD, Eberli GP et al (2014) Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology 12:231–49. doi:10.1111/gbi.12079

    Article  CAS  PubMed  Google Scholar 

  • Dotzler N, Krings M, Taylor TN et al (2006) Germination shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert. Mycol Progr 5:178–184

    Article  Google Scholar 

  • Dotzler N, Walker C, Krings M et al (2009) Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert. Mycol Progr 8:9–18

    Article  Google Scholar 

  • Droser ML, Gehling JG, Jensen SR (2006) Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeogr Palaeoclim Palaeoecol 232:131–147

    Article  Google Scholar 

  • Duck LJ, Glikson M, Golding SD et al (2007) Microbial remains and other carbonaceous forms from the 3.24 Ga Sulphur Springs black smoker deposit, Western Australia. Precambrian Res 154:205–220

    Article  CAS  Google Scholar 

  • Dunlop JSR, Milne VA, Groves DI et al (1978) A new microfossils assemblage from the Archean of Western Australia. Nature 274:676–678

    Article  Google Scholar 

  • Dunn KA, McLean RJC, Upchurch GR et al (1997) Enhancement of leaf fossilization potential by bacterial biofilms. Geology 25:1119–1122

    Article  CAS  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Article  CAS  PubMed  Google Scholar 

  • Dupraz C, Reid RP, Braissant O et al (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  CAS  Google Scholar 

  • Dutkiewicz A, Volk H, George SC et al (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology 34:437–440

    Article  CAS  Google Scholar 

  • Efremov IA (1940) Taphonomy: a new branch of paleontology. Pan-Am Geol 74:81–93

    Google Scholar 

  • Eglinton G, Logan GA, Ambler RP et al (1991) Molecular preservation [and discussion]. Phil Trans R Soc Lond B 333:315–328

    Article  CAS  Google Scholar 

  • El Albani A, Bengtson S, Canfield DE et al (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104

    Article  PubMed  CAS  Google Scholar 

  • Fang HW, Shang QQ, Chen MH et al (2014) Changes in the critical erosion velocity for sediment colonized by biofilm. Sedimentology 61:648–659

    Article  Google Scholar 

  • Fedo CM, Whitehouse MJ (2002) Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296:1448–1452

    Article  CAS  PubMed  Google Scholar 

  • Fernando AA, Currah RS (1995) Leptodontidium orchidicola (Mycelium radicis atrovirens complex): aspects of its conidiogenesis and ecology. Mycotaxon 54:287–294

    Google Scholar 

  • Fernández N, Messuti MI, Fontenla S (2008) Arbuscular mycorrhizas and dark septate fungi in Lycopodium paniculatum (Lycopodiaceae) and Equisetum bogotense (Equisetaceae) in a Valdivian temperate forest of Patagonia, Argentina. Am Fern J 98:117–127

    Article  Google Scholar 

  • Ferris FG (1993) Microbial biomineralization in natural environments. Earth Sci 47:233–250

    CAS  Google Scholar 

  • Ferris FG, Fyfe WS, Beveridge TJ (1987) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol 63:225–232

    Article  CAS  Google Scholar 

  • Ferris FG, Fyfe WS, Beveridge TJ (1988) Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16:149–152

    Article  CAS  Google Scholar 

  • Fisk MR, Giovannoni SJ, Thorseth IH (1998) Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281:978–979

    Article  CAS  PubMed  Google Scholar 

  • Fletcher BJ, Beerling DJ, Chaloner WG (2004) Stable carbon isotopes and the metabolism of the terrestrial Devonian organism Spongiophyton. Geobiology 2:107–119

    Article  Google Scholar 

  • Fliegel D, Kosler J, McLoughlin N et al (2010) In-situ dating of the Earth’s oldest trace fossil at 3.34 Ga. Earth Planet Sci Lett 299:290–298

    Article  CAS  Google Scholar 

  • Flood BE, Bailey JV, Biddle JF (2014) Horizontal gene transfer and the rock record: comparative genomics of phylogenetically distant bacteria that induce wrinkle structure formation in modern sediments. Geobiology 12:119–132

    Article  CAS  PubMed  Google Scholar 

  • Folk RL (1993) SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J Sed Petrol 63:990–999

    Google Scholar 

  • Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals: Reviews in Mineralogy 35. Mineralogical Society of America, Washington, pp 161–180

    Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54:95–114

    Article  CAS  Google Scholar 

  • Fregenal-Martínez MA, Buscalioni AD (2010) A holistic approach to the palaeoecology of Las Hoyas Konservat-Lagerstätte (La Huérguina Formation, Lower Cretaceous, Iberian Ranges, Spain). J Iberian Geol 36:297–326

    Article  Google Scholar 

  • Frey E, Martill DM, Buchy MC (2003) A new species of tapejarid pterosaur with soft–tissue head crest. Geol Soc Lond Spec Publ 217:65–72

    Article  Google Scholar 

  • Furnes H, Muehlenbachs K (2003) Bioalteration recorded in ophiolitic pillow lavas. Geol Soc Lond Spec Publ 218:415–426

    Article  CAS  Google Scholar 

  • Furnes H, Staudigel H, Thorseth IH et al (2001) Bioalteration of basaltic glass in the oceanic crust. Geochem Geophys Geosyst 2:1049. doi:10.1029/2000GC000150

    Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K et al (2004) Early life recorded in Archean pillow lavas. Science 304:578–581

    Article  CAS  PubMed  Google Scholar 

  • Furnes H, Banerjee NR, Staudigel H et al (2007) Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocks. Precambrian Res 158:156–176

    Article  CAS  Google Scholar 

  • Gabbott SE (1998) Taphonomy of the Ordovician Soom Shale Lagerstätte: an example of soft tissue preservation in clay minerals. Palaeontology 41:631–668

    Google Scholar 

  • Gabbott SE, Norry MJ, Aldridge RJ et al (2001) Preservation of fossils in clay minerals; a unique example from the Upper Ordovician Soom Shale, South Africa. Proc Yorkshire Geol Polytech Soc 53:237–244

    Article  Google Scholar 

  • Gabbott SE, Xian-Guang H, Norry MJ et al (2004) Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32:901–904

    Article  CAS  Google Scholar 

  • Gaines RR, Briggs DE, Yuanlong Z (2008) Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology 36:755–758

    Article  CAS  Google Scholar 

  • Gaines RR, Kennedy MJ, Droser ML (2005) A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeogr Palaeoclim Palaeoecol 220:193–205

    Article  Google Scholar 

  • Gall JC, Bernier P, Gaillard C et al (1985) Influence du développement d'un voile algaire sur la sédimentation et la taphonomie des calcaires lithographiques. Exemple du gisement de Cerin (Kimméridgien supérieur, Jura méridional français). Mém Phys Chim Sci l'univers, Sci de la Terre 301:547–552

    Google Scholar 

  • Gall JC (1990) Les voiles microbiens. Leur contribution à la fossilisation des organismes au corps mou. Lethaia 23:21–28

    Article  Google Scholar 

  • Gaines RR, Hammarlund EU, Hou X, Qi C, Gabbott SE, Zhao Y, Peng J, Canfield DE (2012) Mechanism for Burgess Shale-type preservation. Proc Natl Acad Sci USA 109:5180–5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia Massini JL (2007) A glomalean fungus from the Permian of Antarctica. Int J Plant Sci 168:673–678

    Article  Google Scholar 

  • Garcia-Ruiz JM, Hyde ST, Carnerup AM et al (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Gargas A, DePriest PT, Grube M et al (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    Article  CAS  PubMed  Google Scholar 

  • Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks. Palaios 14:40–57

    Article  Google Scholar 

  • Gehling JG, Droser ML, Jensen SR et al (2005) Ediacara organisms: relating form to function. In: Evolving form and function: fossils and development, Symposium Proceedings, Peabody Museum of Natural History, Yale University, New Haven, p 43–67

    Google Scholar 

  • Gehrig H, Schüssler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the glomales: evidence by SSU rRNA Analysis. J Mol Evol 4:371–81

    Google Scholar 

  • Gehring AU, Kind J, Charilaou M et al (2011) The detection of magnetotactic bacteria and magnetofossils by means of magnetic anisotropy. Earth Planet Sci Lett 309:113–117

    Article  CAS  Google Scholar 

  • George SC, Volk H, Dutkiewicz A et al (2008) Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years. Geochim Cosmochim Acta 72:844–870

    Article  CAS  Google Scholar 

  • Gerdes G, Claes M, Dunajtschik-Piewak K et al (1993) Contribution of microbial mats to sedimentary surface structures. Facies 29:61–74

    Article  Google Scholar 

  • German TN, Podkovyrov VN (2009) New insights into the nature of the Late Riphean Eosolenides. Precambrian Res 173:154–162

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Fisk MR, Mullins TD et al (1996) Genetic evidence for endolithic microbial life colonizing basaltic glass/seawater interfaces. In: Alt JC, Kinoshita H, Stokking LB et al (eds) Proceedings of the Ocean Drilling Program. Sci Results 148:207–214

    Google Scholar 

  • Glikson M, Duck LJ, Golding SD et al (2008) Microbial remains in some earliest Earth rocks: comparison with a potential modern analogue. Precambrian Res 164:187–200

    Article  CAS  Google Scholar 

  • Golden DC, Ming DW, Schwandt CS et al (2000) An experimental study on kinetically-driven precipitation of Ca-Mg-Fe carbonates from solution: implications for the low temperature formation of carbonates in Martian meteorite Allan Hills 84001. Meteorit Planet Sci 35:457–465

    Article  CAS  Google Scholar 

  • Golden DC, Ming DW, Morris RV et al (2004) Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am Mineral 89:681–695

    Article  CAS  Google Scholar 

  • Golubic S, Barghoorn ES (1977) Interpretation of microbial fossils with special reference to the Precambrian. In: Flügel E (ed) Fossil algae: recent results and developments. Springer, Berlin, pp 1–14

    Chapter  Google Scholar 

  • Golubic S, Hofmann HJ (1976) Comparison of modern and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J Paleontol 50:1074–1092

    Google Scholar 

  • Golubic S, Knoll AH (1993) Prokaryotes. In: Lipps JH (ed) Fossil prokaryotes and protists. Blackwell, Boston, pp 51–76

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sed Petrol 51:475–478

    Google Scholar 

  • Gorbushina AA, Krumbein WE (2000) Subaerial microbial mats and their effects on soil and rock. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 161–170

    Chapter  Google Scholar 

  • Grasby SE (2003) Naturally precipitating vaterite (μ-CaCO3) spheres: unusual carbonates formed in an extreme environment. Geochim Cosmochim Acta 67:1659–1666

    Article  CAS  Google Scholar 

  • Grey K, Williams IR (1990) Problematic bedding-plane markings from the Middle Proterozoic Manganese Supergroup, Bangemall Basin, Western Australia. Precambrian Res 46:307–327

    Article  Google Scholar 

  • Grey K, Yochelson EL, Fedonkin MA et al (2010) Horodyskia williamsii new species, a Mesoproterozoic macrofossil from Western Australia. Precambrian Res 180:1–17

    Article  CAS  Google Scholar 

  • Grimes ST, Brock F, Rickard D et al (2001) Understanding fossilization: experimental pyritization of plants. Geology 29:123–126

    Article  CAS  Google Scholar 

  • Grimes ST, Davies KL, Butler IB et al (2002) Fossil plants from the Eocene London Clay: the use of pyrite textures to determine the mechanism of pyritization. J Geol Soc 159:493–501

    Article  CAS  Google Scholar 

  • Grotzinger JP, Rothman DH (1996) An abiotic model for stomatolite morphogenesis. Nature 383:423–425

    Article  CAS  Google Scholar 

  • Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85

    Article  Google Scholar 

  • Grube M, Kroken S (2000) Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycol Res 104:1284–1294

    Article  CAS  Google Scholar 

  • Grube M, Winka K (2002) Progress in understanding the evolution and classification of lichenized ascomycetes. Mycologist 16:67–76

    Article  Google Scholar 

  • Han T-M, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1 billion-tear-old Negaunee Iron Formation, Michigan. Science 257:232–235

    Article  CAS  PubMed  Google Scholar 

  • Harper CJ, Taylor TN, Krings M et al (2013) Mycorrhizal symbiosis in the Paleozoic seed fern Glossopteris from Antarctica. Rev Palaeobot Palynol 192:22–31

    Article  Google Scholar 

  • Harrington DJ (1996) Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun 64:1885–1891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hedges RE (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328

    Article  CAS  Google Scholar 

  • Helm RF, Huang Z, Edwards D et al (2000) Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc commune DRH-1. J Bacteriol 182:974–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann TN, Podkovyrov VN (2006) Fungal remains from the Late Riphean. Paleontol J 40:207–214

    Article  Google Scholar 

  • Hickman AH, Van Kranendonk MJ (2012) Early Earth evolution: evidence from the 3.5–1.8 Ga geologic history of the Pilbara region of Western Australia. Episodes 35:283–297

    Google Scholar 

  • Hippler D, Hu N, Steiner M et al (2012) Experimental mineralization of crustacean eggs: new implications for the fossilization of Precambrian-Cambrian embryos. Biogeosciences 9:1765–1775

    Article  CAS  Google Scholar 

  • Hof CH, Briggs DE (1997) Decay and mineralization of mantis shrimps (Stomatopoda; Crustacea); a key to their fossil record. Palaios 12:420–438

    Article  Google Scholar 

  • Hofmann HJ (1972) Precambrian remains in Canada: fossils, dubiofossils and pseudofossils. In: Proceedings of the 24th International Geological Congress, Section 1, p 20–30

    Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada—significance and systematics. J Paleo 50:1040–1073

    Google Scholar 

  • Hofmann HJ (2000) Archean stromatolites as microbial archives. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 315–327

    Chapter  Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH et al (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262

    Article  Google Scholar 

  • Honegger R (2009) Lichen-forming fungi and their photobionts. In: Deising H (ed) The Mycota, vol 5, Plant relationships. Springer, Berlin, pp 305–333

    Chapter  Google Scholar 

  • Honegger R, Axe L, Edwards D (2013a) Bacterial epibionts and endolichenic actinobacteria and fungi in the Lower Devonian lichen Chlorolichenomycites salopensis. Fungal Biol 117:512–518

    Article  CAS  PubMed  Google Scholar 

  • Honegger R, Edwards D, Axe L (2013b) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 197:264–275

    Article  PubMed  Google Scholar 

  • Horodyski RJ (1980) Middle Proterozoic shale-facies microbiota from the Lower Belt Supergroup, Little Belt Mountains, Montana. J Paleo 54:649–663

    Google Scholar 

  • Horodyski RJ (1982) Problematic bedding-plane markings from the Middle Proterozoic Appekunny Argillite, Belt Supergroup, Northwestern Montana. J Paleo 56:882–889

    Google Scholar 

  • Horodyski RJ, Knauth LP (1994) Life on land in the Precambrian. Science 263:494–498

    Article  CAS  PubMed  Google Scholar 

  • House CH, Schopf JW, McKeegan KD et al (2000) Carbon isotopic composition of individual Precambrian microfossils. Geology 28:707–710

    Article  CAS  PubMed  Google Scholar 

  • Huldtgren T, Cunningham JA, Yin C et al (2011) Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science 334:1696–1699

    Article  CAS  PubMed  Google Scholar 

  • Humphreys CP, Franks PJ, Rees M et al (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103

    Article  PubMed  CAS  Google Scholar 

  • Iniesto M, Lopez-Archilla AI, Fregenal-Martínez M et al (2013) Involvement of microbial mats in delayed decay: an experimental essay on fish preservation. Palaios 28:56–66

    Article  Google Scholar 

  • Jans MME, Nielsen-Marsh CM, Smith CI et al (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31:87–95

    Article  Google Scholar 

  • Javaux EJ (2007) Patterns of diversification in early eukaryotes. Carnets de Geologie/Notebooks on Geology 2007(01):38–42

    Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69

    Article  CAS  PubMed  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94

    Article  CAS  PubMed  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132

    Article  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes–are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root‐colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Jung HG, Deetz DA (1993) Cell wall lignification and degradability. In: Jung HG, Buxton DR, Hatfield RD et al (eds) Forage cell wall structure and digestibility. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, p 315–346

    Google Scholar 

  • Kalanetra KM, Joye SB, Sunser NR et al (2005) Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environ Microbiol 7:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Z Dtsch Geol Ges 60:68–125

    Google Scholar 

  • Karatygin IV, Snigirevskaya NS, Vikulin SV (2009) The most ancient terrestrial lichen Winfrenatia reticulata: a new find and new interpretation. Paleontol J 43:107–114

    Article  Google Scholar 

  • Kaye TG, Gaugler G, Sawlowicz Z (2008) Dinosaurian soft tissues interpreted as bacterial biofilms. PLoS One 3, e2808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazmierczak J (1979) The eukaryotic nature of Eosphaera-like ferriferous structures from the Precambrian Gunflint Iron Formation, Canada: a comparative study. Precambrian Res 9:1–22

    Article  Google Scholar 

  • Kazmierczak J, Kempe S (2006) Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafo’ou Island, Tonga. Naturwissenschaften 93:119–126

    Article  CAS  PubMed  Google Scholar 

  • Kellner AW (1996a) Reinterpretation of a remarkably well preserved pterosaur soft tissue from the Early Cretaceous of Brazil. J Vert Paleo 16:718–722

    Article  Google Scholar 

  • Kellner AWA (1996b) Fossilized theropod soft tissue. Nature 379:32

    Article  CAS  Google Scholar 

  • Kennard JM, James NP (1986) Thrombolites and stromatolites; two distinct types of microbial structures. Palaios 1:492–503

    Article  Google Scholar 

  • Kirkland BL, Lynch FL, Rahnis MA et al (1999) Alternative origins for nannobacteria-like objects in calcite. Geology 27:347–350

    Article  Google Scholar 

  • Kiyokawa S, Ito T, Ikehara M et al (2006) Middle Archean volcano-hydrothermal sequence: bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. Geol Soc Am Bull 118:3–22

    Article  Google Scholar 

  • Klein C, Beukes NJ, Schopf JW (1987) Filamentous microfossils in the early Proterozoic Transvaal Super group: their morphology, significance, and paleoenviron mental setting. Precambrian Res 36:81–94

    Article  Google Scholar 

  • Kluge M, Mollenhauer D, Wolf E et al (2003) The Nostoc-Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 19–30

    Chapter  Google Scholar 

  • Klymiuk AA, Stockey RA, Rothwell GW (2011) The first organismal concept for an extinct species of Pinaceae: Pinus arnoldii Miller. Int J Plant Sci 172:294–313

    Article  Google Scholar 

  • Klymiuk AA, Harper CJ, Moore DM et al (2013a) Reinvestigating Carboniferous “actinomycetes”: authigenic formation of biomimetic carbonates provides insight into early diagenesis of permineralized plants. Palaios 28:80–92

    Article  Google Scholar 

  • Klymiuk AA, Taylor TN, Taylor EL et al (2013b) Paleomycology of the Princeton Chert II. Dark-septate fungi in the aquatic angiosperm Eorhiza arnoldii indicate a diverse assemblage of root-colonizing fungi during the Eocene. Mycologia 105:1100–1109

    Article  PubMed  Google Scholar 

  • Knight TK, Bingham PS, Lewis RD, Savrda CE (2011) Feathers of the Ingersoll shale, Eutaw Formation (Upper Cretaceous), eastern Alabama: the largest collection of feathers from North American Mesozoic rocks. Palaios 26:364–376

    Article  Google Scholar 

  • Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622–627

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH (2012) The fossil record of microbial life. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 297–314

    Chapter  Google Scholar 

  • Knoll AH (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb Perspect Biol 6:a016121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoll AH, Awramik SM (1983) Ancient microbial ecosystems. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 287–315

    Google Scholar 

  • Knoll AH, Bambach RK (2000) Directionality in the history of life: diffusion fom the left wall or repeated scaling on the right? In: Erwin DH, Wing SL (eds) Deep time. Paleobiology’s perspective. The Paleontological Society. Supplement to Palaios 26:1–14

    Google Scholar 

  • Knoll AH, Barghoorn ES (1974) Ambient pyrite in Precambrian chert: new evidence and a theory. Proc Nat Acad Sci USA 71:2329–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll AH, Barghoorn ES (1975) Precambrian eukaryotic organisms: a reassessment of the evidence. Science 190:52–54

    Article  Google Scholar 

  • Knoll AH, Barghoorn ES (1977) Microfossils showing cell division from the Swaziland System of South Africa. Science 198:396–398

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH, Golubic S (1979) Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Res 10:115–151

    Article  Google Scholar 

  • Knoll AH, Golubic S, Green J et al (1986) Organically preserved microbial endoliths from the late Proterozoic of East Greenland. Nature 321:856

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D et al (2006) Eukaryotic organisms in Proterozoic oceans. Phil Trans R Soc Lond B 361:1023–1038

    Article  CAS  Google Scholar 

  • Knoll AH, Canfield DE, Konhauser KO (eds) (2012) Fundamentals of geobiology. Wiley-Blackwell, Chichester

    Google Scholar 

  • Knoll AH, Worndle S, Kah LC (2013) Covariance of microfossil assemblages and microbialite textures across an upper Mesoproterozoic carbonate platform. Palaios 28:453–470

    Article  Google Scholar 

  • Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Sci Rev 43:91–121

    Article  CAS  Google Scholar 

  • Konhauser KO, Riding R (2012) Bacterial biomineralization. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 105–130

    Chapter  Google Scholar 

  • Konhauser KO, Fisher QJ, Fyfe WS et al (1998) Authigenic mineralization and detrital clay binding by freshwater biofilms: the Brahmani River, India. Geomicrobiol J 15:209–222

    Article  CAS  Google Scholar 

  • Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolisms. Elements 7:89–93

    Article  CAS  Google Scholar 

  • Kremer B, Kazmierczak J (2005) Cyanobacterial mats from Silurian black radiolarian cherts: phototrophic life at the edge of darkness? J Sediment Res 75:897–906

    Article  Google Scholar 

  • Kremer B, Kazmierczak J, Lukomska-Kowalczyk M et al (2012a) Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo'ou's caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12:535–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer B, Owocki K, Królikowska A et al (2012b) Mineral microbial structures in a bone of the Late Cretaceous dinosaur Saurolophus angustirostris from the Gobi Desert, Mongolia—a Raman spectroscopy study. Palaeogeogr Palaeoclim Palaeoecol 358:51–61

    Article  Google Scholar 

  • Krings M, Taylor TN, Hass H et al (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  • Krings M, Hass H, Kerp H et al (2009) Endophytic cyanobacteria in a 400-million-yr-old land plant: a scenario for the origin of a symbiosis? Rev Palaeobot Palynol 153:62–69

    Article  Google Scholar 

  • Krings M, Taylor TN, Dotzler N (2012) Fungal endophytes as a driving force in land plant evolution: evidence from the fossil record. In: Southworth D (ed) Biocomplexity of plant-fungal interactions. Wiley, New York, pp 5–28

    Chapter  Google Scholar 

  • Krumbein WE (1979) Calcification by bacteria and algae. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming element. Elsevier, Amsterdam, pp 47–68

    Chapter  Google Scholar 

  • Laflamme M, Schiffbauer JD, Narbonne GM et al (2011) Microbial biofilms and the preservation of the Ediacara biota. Lethaia 44:203–213

    Article  Google Scholar 

  • Laflamme M, Schiffbauer JD, Narbonne GM (2012) Deep-water microbially induced sedimentary structures (MISS) in deep time: the Ediacaran fossil Ivesheadia. In: Noffke NK, Chafetz H (eds) Microbial mats in siliciclastic depositional systems through time. SEPM Special Publication 101:111–123

    Google Scholar 

  • Lamb DM, Awramik SM, Chapman DJ et al (2009) Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China. Precambrian Res 173:93–104

    Article  CAS  Google Scholar 

  • Lang BF, Burger G (2012) Mitochondrial and eukaryotic origins: a critical review. In: Marechal-Drouard L (ed) Mitochondrial genome evolution. Elsevier—Academic, Amsterdam, pp 1–20

    Chapter  Google Scholar 

  • Lawson AC, Czernuszka JT (1998) Collagen-calcium phosphate composites. J Eng Med 212:413–425

    Article  CAS  Google Scholar 

  • LePage B, Currah R, Stockey R et al (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410–410

    Article  CAS  PubMed  Google Scholar 

  • Lepland A, Arrhenius G, Cornell D (2002) Apatite in early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precambrian Res 118:221–241

    Article  CAS  Google Scholar 

  • Lepland A, Van Zuilen MA, Philippot P (2011) Fluid-deposited graphite and its geobiological implications in early Archean gneiss from Akilia, Greenland. Geobiology 9:2–9

    Article  CAS  PubMed  Google Scholar 

  • Lepot K, Benzerara K, Brown GE Jr et al (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nat Geosci 1:118–121

    Article  CAS  Google Scholar 

  • Lepot K, Philippot P, Benzerara K et al (2009a) Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt. Geobiology 7:393–402

    Article  CAS  PubMed  Google Scholar 

  • Lepot K, Benzerara K, Rividi N et al (2009b) Organic matter heterogeneities in 2.72 Ga stromatolites: alteration versus preservation by sulfur incorporation. Geochim Cosmochim Acta 73:6579–6599

    Article  CAS  Google Scholar 

  • Lerosey-Aubril R, Hegna TA, Kier C et al (2012) Controls on gut phosphatisation: the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah). PLoS One 7, e32934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Léveillé RJ, Fyfe WS, Longstaffe FJ (2000) Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves. Chem Geol 169:339–355

    Article  Google Scholar 

  • Li Q, Gao KQ, Vinther J et al (2010a) Plumage color patterns of an extinct dinosaur. Science 327:1369–1372

    Article  CAS  PubMed  Google Scholar 

  • Li C, Love GD, Lyons TW et al (2010b) A stratified redox model for the Ediacaran Ocean. Science 328:80–83

    Article  CAS  PubMed  Google Scholar 

  • Liebig K (2001) Bacteria. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 253–256

    Chapter  Google Scholar 

  • Lin JP (2007) Preservation of the gastrointestinal system in Olenoides (Trilobita) from the Kaili Biota (Cambrian) of Guizhou, China. Mem Assoc Australasian Palaeontol 33:179

    Google Scholar 

  • Liu Y, Simon JD (2003) Isolation and biophysical studies of natural eumelanins: applications of imaging technologies and ultrafast spectroscopy. Pigment Cell Res 16:606–618

    Article  CAS  PubMed  Google Scholar 

  • Liu AG, Mcilroy D, Antcliffe JB, Brasier MD (2011) Effaced preservation in the Ediacara biota and its implications for the early macrofossil record. Palaeontology 54:607–630

    Article  Google Scholar 

  • Lockley MG (1986) The paleobiological and paleoenvironmental importance of dinosaur footprints. Palaios 1:37–47

    Article  Google Scholar 

  • Lockley MG (1991) Tracking dinosaurs: a new look at an ancient world. Cambridge University Press, Cambridge

    Google Scholar 

  • Loeblich TR (1970) Morphology, ultrastructure and distribution of Palaeozoic acritarchs. In: Proceedings of the North American Palaeontological Convention G, p 705–788

    Google Scholar 

  • Lovley DR, Stolz JF, Nord GL et al (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments: a review. Appl Environ Microbiol 51:683–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Maciá‐Vicente JG, Rosso LC, Ciancio A et al (2009) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol 155:391–401

    Article  Google Scholar 

  • MacLean LC, Tyliszczak T, Gilbert PU, Zhou D, Pray TJ, Onstott TC, Southam G (2008) A high‐resolution chemical and structural study of framboidal pyrite formed within a low‐temperature bacterial biofilm. Geobiology 6:471–480

    Article  CAS  PubMed  Google Scholar 

  • Manning PL, Morris PM, McMahon A et al (2009) Mineralized soft–tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA). Proc R Soc B: Biol Sci 276:3429–3437

    Article  CAS  Google Scholar 

  • Marshall CP, Javaux EJ, Knoll AH et al (2005) Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology. Precambrian Res 138:208–224

    Article  CAS  Google Scholar 

  • Marshall CP, Edwards HGM, Jehlicka J (2010) Understanding the application of Raman spectroscopy to the detection of traces of life. Astrobiology 10:229–243

    Article  CAS  PubMed  Google Scholar 

  • Marshall CP, Emry JR, Olcott Marshall A (2011) Haematite pseudomicrofossils present in the 3.5-billion-year-old Apex Chert. Nat Geosci 4:240–243

    Article  CAS  Google Scholar 

  • Martill DM (1987) Prokaryote mats replacing soft tissues in Mesozoic marine reptiles. Modern Geol 11:265–269

    Google Scholar 

  • Martill DM (1988) Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology 31:1–18

    Google Scholar 

  • Martill DM (1989) The Medusa effect: instantaneous fossilization. Geol Today 5:201–205

    Article  Google Scholar 

  • Martill DM (1991) Organically preserved dinosaur skin: taphonomic and biological implications. Modern Geol 16:61–68

    Google Scholar 

  • Martill DM (1990) Macromolecular resolution of fossilized muscle tissues from an elopomorph fish. Nature 346:171–172

    Article  Google Scholar 

  • Martill DM, Unwin DM (1989) Exceptionally well preserved pterosaur wing membrane from the Cretaceous of Brazil. Nature 340:138–140

    Article  Google Scholar 

  • Martill DM, Unwin DM (1997) Small spheres in fossil bones: blood corpuscles or diagenetic products? Palaeontology 40:619–624

    Google Scholar 

  • Martill DM, Brito PM, Washington-Evans J (2008) Mass mortality of fishes in the Santana Formation (Lower Cretaceous, ?Albian) of northeast Brazil. Cretceous Res 29:649–658

    Article  Google Scholar 

  • Martin D, Briggs DE, Parkes RJ (2004) Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils. J Geol Soc 161:735–738

    Article  CAS  Google Scholar 

  • Martin D, Briggs DE, Parkes RJ (2005) Decay and mineralization of invertebrate eggs. Palaios 20:562–572

    Article  Google Scholar 

  • Marty D, Strasser A, Meyer CA (2009) Formation and taphonomy of human footprints in microbial mats of present-day tidal-flat environments: implications for the study of fossil footprints. Ichnos 16:127–142

    Article  Google Scholar 

  • Matsunaga KK, Stockey RA, Tomescu AM (2013) Honeggeriella complexa gen. et sp. nov., a heteromerous lichen from the Lower Cretaceous of Vancouver Island (British Columbia, Canada). Am J Bot 100:450–459

    Article  PubMed  Google Scholar 

  • Mayr G, Manegold A (2013) Can ovarian follicles fossilize? Nature 499, E1

    Article  CAS  PubMed  Google Scholar 

  • McCollum TM (2003) Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochim Cosmochim Acta 67:311–317

    Article  Google Scholar 

  • McDermid AS, McKee AS, Marsh PD (1988) Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50. Infect Immun 56:1096–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • McElhiney J, Lawton LA, Leifert C (2001) Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon 39:1411–1420

    Article  CAS  PubMed  Google Scholar 

  • McGregor VR, Mason B (1977) Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amitsoq gneisses, West Greenland. Am Mineral 62:887–904

    CAS  Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL et al (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH 84001. Science 273:924–930

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin N, Wacey D, Brasier MD et al (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin N, Wilson LA, Brasier MD (2008) Growth of synthetic stromatolites and wrinkle structures in the absence of microbes—implications for the early fossil record. Geobiology 6:95–105

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin N, Furnes H, Banerjee NR et al (2009) Ichnotaxonomy of microbial trace fossils in volcanic glass. J Geol Soc 166:159–169

    Article  Google Scholar 

  • McLoughlin N, Grosch EG, Kilburn MR et al (2012) Sulfur isotope evidence for Paleoarchean subseafloor biosphere, Barberton, South Africa. Geology 40:1031–1034

    Article  CAS  Google Scholar 

  • McNamara M, Orr PJ, Kearns SL et al (2010) Organic preservation of fossil musculature with ultracellular detail. Proc R Soc B: Biol Sci 277:423–427

    Article  Google Scholar 

  • McNamara ME, Orr PJ, Kearns SL et al (2009) Soft-tissue preservation in Miocene frogs from Libros, Spain: insights into the genesis of decay microenvironments. Palaios 24:104–117

    Article  Google Scholar 

  • Millay MA, Eggert DA (1974) Microgametophyte development in the Paleozoic seed fern family Callistophytaceae. Am J Bot 60:1067–1075

    Article  Google Scholar 

  • Moczydlowska M, Willman S (2009) Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities. Precambrian Res 173:27–38

    Article  CAS  Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59

    Article  CAS  PubMed  Google Scholar 

  • Moorbath S, O’Nions RK, Pankhurst RJ (1973) Early Archaean age for the Isua iron formation, West Greenland. Nature 240:138–139

    Article  Google Scholar 

  • Morris CE, Monier J, Jacques M (1997) Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol 63:1570–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris PA, Wentworth SJ, Allen CC et al (1999) Methods for determining biogenicity in Archean and other ancient rocks. In: Lunar and Planetary Science Conference XXX, http://www.lpi.usra.edu/meetings/LPSC99/pdf/1952.pdf

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munnecke A, Servais T, Vachard D (2001) Halysis Hoeg, 1932—a problematic Cyanophyceae: new evidence from the Silurian of Gotland (Sweden). N Jb Geol Palaont Mh 7:21–42

    Google Scholar 

  • Nelsen MP, Lücking R, Grube M et al (2009) Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Stud Mycol 64:135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newsham KK (2011) A meta‐analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ (1983) Organelle preservation and protoplast partitioning in fossil angiosperm leaf tissues. Am J Bot 70:543–548

    Article  Google Scholar 

  • Niklas KJ, Newman SA (2013) The origins of multicellular organisms. Evol Dev 15:41–52

    Article  PubMed  Google Scholar 

  • Niklas KJ, Brown RM Jr, Santos R (1985) Ultrastructural states of preservation in Clarkia angiosperm leaf tissues: implications on modes of fossilization. In: Smiley CJ (ed) Late Cenozoic History of the Pacific Northwest: interdisciplinary studies of the Clarkia beds of Northern Idaho. Pacific Division of the AAAS, California Academy of Sciences, San Francisco, p 143–159

    Google Scholar 

  • Niklas KJ, Cobb ED, Crawford DR (2013) The evo-devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity. Evol Dev 15:466–474

    Article  PubMed  Google Scholar 

  • Nisbet EG (1980) Archean stromatolites and the search for the earliest life. Nature 284:395–396

    Article  Google Scholar 

  • Noffke N (2009) The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth-Sci Rev 96:173–180

    Article  CAS  Google Scholar 

  • Noffke N (2010) Microbial mats in sandy deposits from the Archean Era to today. Springer, New York

    Google Scholar 

  • Noffke N, Awramik SM (2013) Stromatolites and MISS—differences between relatives. GSA Today 23:4–9

    Article  Google Scholar 

  • Noffke N, Chafetz H (eds) (2012) Microbial mats in siliciclastic depositional systems through time. SEPM Special Publicartion no. 101. Society for Sedimentary Geology, Tulsa

    Google Scholar 

  • Noffke N, Gerdes G, Klenke T et al (1996) Microbially induced sedimentary structures—examples from modern sediments of siliciclastic tidal flats. Zb Geol Palaont 1:307–316

    Google Scholar 

  • Noffke N, Gerdes G, Klenke T et al (2001) Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656

    Article  Google Scholar 

  • Noffke N, Hazen R, Nhleko N (2003) Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology 31:673–676

    Article  Google Scholar 

  • Noffke N, Eriksson KA, Hazen RM et al (2006) A new window into Early Archean life: microbial mats in Earths oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34:253–256

    Article  CAS  Google Scholar 

  • Noffke N, Christian D, Wacey D et al (2013a) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13:1103–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noffke N, Decho AW, Stoodley P (2013b) Slime through time: the fossil record of prokaryote evolution. Palaios 28:1–5

    Article  Google Scholar 

  • O’Brien NR, Meyer HW, Reilly K et al (2002) Microbial taphonomic processes in the fossilization of insects and plants in the late Eocene Florissant Formation, Colorado. Rocky Mtn Geol 37:1–11

    Article  Google Scholar 

  • Oehler DZ (1976) Transmission electron microscopy of organic microfossils from the late Precambrian Bitter Springs Formation, Australia: techniques and survey of preserved ultrastructure. J Paleo 50:90–106

    Google Scholar 

  • Oehler DZ (1977) Pyrenoid-like structures in late Precambrian algae from the Bitter Springs Formation of Australia. J Paleontol 51:885–901

    Google Scholar 

  • Ohtomo Y, Kakegawa T, Ishida A et al (2014) Evidence for biogenic graphite in early Archean Isua metasedimentary rocks. Nat Geosci 7:25–28

    Article  CAS  Google Scholar 

  • Olcott Marshall A, Jehlicka J, Rouzaud JN et al (2014) Multiple generations of carbonaceous material deposited in Apex chert by basin-scale pervasive hydrothermal fluid flow. Gondwana Res 25:284–289

    Article  Google Scholar 

  • Orr PJ, Benton MJ, Briggs DE (2003) Post-Cambrian closure of the deep-water slope-basin taphonomic window. Geology 31:769–772

    Article  Google Scholar 

  • Orr PJ, Briggs DE, Kearns SL (1998) Cambrian Burgess Shale animals replicated in clay minerals. Science 281:1173–1175

    Article  CAS  PubMed  Google Scholar 

  • Page A, Gabbott SE, Wilby PR et al (2008) Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology 36:855–858

    Article  CAS  Google Scholar 

  • Pang K, Tang Q, Schiffbauer JD et al (2013) The nature and origin of nucleus‐like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11:499–510

    CAS  PubMed  Google Scholar 

  • Papineau D, De Gregorio BT, Cody GD et al (2010) Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland I: petrographic and spectroscopic characterization. Geochim Cosmochim Ac 74:5862–5883

    Article  CAS  Google Scholar 

  • Pasteris JD, Wopenka B (2003) Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3:727–738

    Article  CAS  PubMed  Google Scholar 

  • Peach BN, Horne J, Gunn W et al (1907) The Geological Structure of the Northwest Highlands of Scotland. Memoirs of the Geological Survey of Great Britain 1907:1–668

    Google Scholar 

  • Peat CJ, Muir MD, Plumb KA et al (1978) Proterozoic microfossils from the Roper Group, Northern Territory, Australia. BMR J Aus Geol Geophys 3:1–17

    Google Scholar 

  • Peckmann J, Goedert JL (2005) Geobiology of ancient and modern methane-seeps. Palaeogeogr Palaeoclim Palaeoecol 227:1–5

    Article  Google Scholar 

  • Pecoits E, Konhauser KO, Aubet NR, Heaman LM, Veroslavsky G, Stern RA, Gingras MK (2012) Bilaterian burrows and grazing behavior at >585 million years ago. Science 336:1693–1696

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Bao H, Yuan X (2009) New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res 168:223–232

    Article  CAS  Google Scholar 

  • Peterson EB (2000) An overlooked fossil lichen (Lobariaceae). Lichenologist 32:298–300

    Article  Google Scholar 

  • Petrovich R (2001) Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities. Am J Sci 301:683–726

    Article  CAS  Google Scholar 

  • Pflug HD (1978a) Frueheste bisher bekannte Lebewesen Isuasphaera isua n. gen. n. spec. aus der Isua-Serie von Groenland (ca. 3800 Mio. J.). Oberhess naturwiss Z 44:131–145

    Google Scholar 

  • Pflug HD (1978b) Yeast-like microfossils detected in oldest sediments of the Earth. Naturwissenschaften 65:611–615

    Article  Google Scholar 

  • Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280:483–486

    Article  CAS  Google Scholar 

  • Pinheiro FL, Horn BL, Schultz CL et al (2012) Fossilized bacteria in a Cretaceous pterosaur headcrest. Lethaia 45:495–499

    Article  Google Scholar 

  • Pinti D, Mineau R, Clement V (2013) Comment on “Biogenicity of Earth’s oldest fossils: a resolution of the controversy” by J. William Schopf and and Anatoliy B. Kudryavtsev, Gondwana Research 22 (2012), 761–771. Gondwana Res 23:1652–1653

    Article  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. BioSystems 6:153–164

    Article  CAS  PubMed  Google Scholar 

  • Planavsky NJ, Asael D, Hofmann A et al (2014) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7:283–286

    Article  CAS  Google Scholar 

  • Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714

    Article  Google Scholar 

  • Poinar GO, Peterson EB, Platt JL (2000) Fossil Parmelia in new world amber. Lichenologist 32:263–269

    Article  Google Scholar 

  • Pons ML, Quitte G, Fujii T et al (2011) Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proc Nat Acad Sci USA 108:17639–17643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poortinga AT, Bos R, Norde W et al (2002) Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep 47:1–32

    Article  CAS  Google Scholar 

  • Popa R, Kinkle BK, Badescu A (2004) Pyrite framboids as biomarkers for iron-sulfur systems. Geomicrobiol J 21:193–206

    Article  CAS  Google Scholar 

  • Pósfai M, Dunin-Borkowski RE (2006) Sulfides in biosystems. Rev Miner Geochem 61:679–714

    Article  CAS  Google Scholar 

  • Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One 8, e65576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raff EC, Villinski JT, Turner FR, Donoghue PC, Raff RA (2006) Experimental taphonomy shows the feasibility of fossil embryos. Proc Natl Acad Sci USA 103:5846–5851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raff EC, Andrews ME, Turner FR et al (2013) Contingent interactions among biofilm‐forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evol Dev 15:243–256

    Article  PubMed  Google Scholar 

  • Raff EC, Schollaert KL, Nelson DE et al (2008) Embryo fossilization is a biological process mediated by microbial biofilms. Proc Nat Acad Sci USA 105:19360–19365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai AN (1990) Handbook of symbiotic cyanobacteria. CRC, Boca Raton, FL

    Google Scholar 

  • Raiswell R, Whaler K, Dean S et al (1993) A simple three-dimensional model of diffusion-with-precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals. Mar Geol 113:89–100

    Article  CAS  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulfide deposit. Nature 405:676–679

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ et al (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen B, Blake TS, Fletcher IR et al (2009) Evidence for microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments. Geology 37:423–426

    Article  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Reid RP, Visscher PT, Decho AW et al (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  CAS  PubMed  Google Scholar 

  • Reis RR, Huang TD, Roberts EM et al (2013) Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains. Nature 496:210–214

    Article  CAS  Google Scholar 

  • Reitner J, Quéric N-V, Arp G (eds) (2011) Advances in stromatolite geobiology. Springer, Berlin

    Google Scholar 

  • Remy W, Taylor TN, Hass H et al (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Nat Acad Sci USA 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retallack GJ (2013) Ediacaran life on land. Nature 493:89–92

    Article  PubMed  CAS  Google Scholar 

  • Retallack GJ (1994) Were the Ediacaran fossils lichens? Paleobiology 20:523–544

    Google Scholar 

  • Rice CM, Trewin NH, Anderson LI (2002) Geological setting of the Early Devonian Rhynie cherts, Aberdeenshire, Scotland: an early terrestrial hot spring system. J Geol Soc 159:203–214

    Article  Google Scholar 

  • Riding R (2011) The nature of stromatolites: 3,500 million years of history and one century of research. In: Reitner J, Quéric N-V, Arp G (eds) Advances in stromatolite geobiology. Springer, Berlin, pp 29–74

    Chapter  Google Scholar 

  • Rikkinen J (2003) Calicioid lichens from European Tertiary amber. Mycologia 95:1032–1036

    Article  PubMed  Google Scholar 

  • Rikkinen J, Poinar GO (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. J Exp Bot 59:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Rikkinen J, Poinar GO Jr (2002) Fossilised Anzia (Lecanorales) lichen-forming Ascomycota from European Tertiary amber. Mycol Res 106:984–990

    Article  Google Scholar 

  • Roberts JA, Kenward PA, Fowle DA et al (2013) Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc Nat Acad Sci USA 110:14540–14545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts TA, Mead GC (1985) Involvement of intestinal anaerobes in the spoilage of red meats, poultry and fish. Soc Appl Bacteriol 13:333–349

    Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Roedder E (1981) Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither? Nature 293:459–462

    Article  Google Scholar 

  • Roh Y, Zhang C-L, Vali H et al (2003) Biogeochemical and environmental factors in Fe biomineralization: magnetite and siderite formation. Clays Clay Min 51:83–95

    Article  CAS  Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    Article  CAS  PubMed  Google Scholar 

  • Rothwell GW, Scheckler SE, Gillespie WH (1989) Elkinsia gen. nov., a late Devonian gymnosperm with cupulate ovules. Bot Gaz 158:170–189

    Article  Google Scholar 

  • Rothwell GW, Wyatt SE, Tomescu AMF (2014) Plant evolution at the interface of paleontology and developmental biology: an organism-centered paradigm. Am J Bot 101:899–913

    Article  PubMed  Google Scholar 

  • Russell JA, Brady AL, Cardman Z et al (2014) Prokaryote populations of extant microbialites along a depth gradient in Pavilion Lake, British Columbia, Canada. Geobiology 12:250. doi:10.1111/gbi.12082

    Article  CAS  PubMed  Google Scholar 

  • Sagemann J, Bale SJ, Briggs DE et al (1999) Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach. Geochim Cosmochim Acta 63:1083–1095

    Article  CAS  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M et al (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Samuelsson J, Dawes PR, Vidal G (1999) Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland. Precambrian Res 96:1–23

    Article  CAS  Google Scholar 

  • San Antonio JD, Schweitzer MH, Jensen ST et al (2011) Dinosaur peptides suggest mechanisms of protein survival. PLoS One 6, e20381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318

    Article  CAS  Google Scholar 

  • Schidlowski M (2000) Carbon isotopes and microbial sediments. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 84–95

    Chapter  Google Scholar 

  • Schieber J, Riciputi L (2005) Pyrite and marcasite coated grains in the Ordovician Winnipeg Formation, Canada: an intertwined record of surface conditions, stratigraphic condensation, geochemical “reworking”, and microbial activity. J Sediment Res 75:907–920

    Article  CAS  Google Scholar 

  • Schieber J, Bose PK, Eriksson PG et al (2007) Atlas of microbial mat features preserved within the siliciclastic rock record. Atlases in Geosciences. Elsevier, Amsterdam

    Google Scholar 

  • Schiffbauer JD, Laflamme M (2012) Lagerstätten through time: a collection of exceptional preservational pathways from the terminal Neoproterozoic through today. Palaios 27:275–278

    Article  Google Scholar 

  • Schmid G, Zeitvogel F, Hao L et al (2014) 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microsopy tomography approaches. Geobiology 12:340–361

    Article  CAS  PubMed  Google Scholar 

  • Schneider DA, Bickford ME, Cannon WF et al (2002) Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Can J Earth Sci 39:999–1012

    Article  CAS  Google Scholar 

  • Schopf JM (1975) Modes of fossil preservation. Rev Palaeobot Palynol 20:27–53

    Article  Google Scholar 

  • Schopf JW (1968) Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. J Paleo 42:651–6881999

    Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (1999) Fossils and pseudofossils: lessons from the hunt for early life on Earth. In: Size limits of very small microorganisms Conference. National Academy Press, Washington, DC, pp. 88–93

    Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archean life. Phil Trans R Soc B 361:869–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf JW (2009) Emergence of Precambrian paleobiology: a new field of science. In: Sepkoski D, Ruse M (eds) The paleobiological revolution. Chicago University Press, Chicago, pp 89–110

    Chapter  Google Scholar 

  • Schopf JW, Blacic JM (1971) New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. J Paleo 45:925–961

    Google Scholar 

  • Schopf JW, Klein C (1992) Times of origin and earliest evidence of major biologic groups. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, New York, pp 587–593

    Chapter  Google Scholar 

  • Schopf JW, Kudryavtsev AB (2012) Biogenicity of Earth’s earliest fossils: a resolution of the controversy. Gondwana Res 22:761–771

    Article  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3- billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Sovietov YK (1976) Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostratigraphy. Science 193:143–146

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, New Jersey, pp 214–239

    Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG et al (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Tripathi AB, Kudryavtsev AB (2006) Three-dimensional confocal optical imagery of Precambrian microscopic organisms. Astrobiology 6:1–16

    Article  PubMed  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Czaja AD et al (2007) Evidence of Archean life: stromatolites and microfossils. Precambrian Res 158:141–155

    Article  CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Sugitani K et al (2010) Precambrian microbe-like pseudofossils: a promising solution to the problem. Precambrian Res 179:191–205

    Article  CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Tripathi AB et al (2011) Three-dimensional morphological (CLSM) and chemical (Raman) imagery of cellularly mineralized fossils. In: Allison PA, Bottjer D (eds) Taphonomy. Springer, Netherlands, pp 457–486

    Google Scholar 

  • Schulz HN, Schulz HD (2005) Large sulfur bacteria and the formation of phosphorite. Science 307:416–418

    Article  CAS  PubMed  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG et al (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  CAS  PubMed  Google Scholar 

  • Schüssler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Esser K, Lemke PA, Hock B (eds) Fungal associations. Springer, Berlin, pp 151–161

    Chapter  Google Scholar 

  • Schweitzer MH, Wittmeyer JL, Horner JR et al (2005) Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science 307:1952–1955

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer MH, Wittmeyer JL, Horner JR (2007) Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present. Proc R Soc B: Biol Sci 274:183–197

    Article  Google Scholar 

  • Schwendemann AB, Taylor TN, Taylor EL, Krings M (2010) Organization, anatomy, and fungal endophytes of a Triassic conifer embryo. Am J Bot 97:1873–1883

    Article  PubMed  Google Scholar 

  • Seckbach J, Walsh M (eds) (2009) From fossils to astrobiology. Springer, Dordrecht

    Google Scholar 

  • Seilacher A, Reif WE, Westphal F et al (1985) Sedimentological, ecological and temporal patterns of fossil Lagerstatten [and Discussion]. Phil Trans R Soc Lond B 311:5–24

    Article  Google Scholar 

  • Semikhatov SM, Gebelein CD, Cloud P et al (1979) Stromatolite morphogenesis—progress and problems. Can J Earth Sci 16:992–1015

    Article  Google Scholar 

  • Seong-Joo L, Golubic S (1998) Multi-trichomous cyanobacterial microfossils from the Mesoproterozoic Gaoyuzhuang Formation, China: paleoecological and taxonomic implications. Lethaia 31:169–184

    Article  CAS  PubMed  Google Scholar 

  • Sepkoski D, Ruse M (2009) Paleontology at the high table. In: Sepkoski D, Ruse M (eds) The paleobiological revolution. Chicago University Press, Chicago, pp 1–11

    Chapter  Google Scholar 

  • Sergeev VN (2009) The distribution of microfossil assemblages in Proterozoic rocks. Precambrian Res 173:212–222

    Article  CAS  Google Scholar 

  • Shapiro RS (2000) A comment on the systematic confusion of thrombolites. Palaios 15:166–169

    Article  Google Scholar 

  • Shapiro RS, Spangler E (2009) Bacterial fossil record in whale-falls: petrographic evidence of microbial sulfate reduction. Palaeogeogr Palaeoclim Palaeocol 274:196–203

    Article  Google Scholar 

  • Sinninghe Damsté JS, de Leeuw JW (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Org Geochem 16:1077–1101

    Article  Google Scholar 

  • Skawina A (2010) Experimental decay of gills in freshwater bivalves as a key to understanding their preservation in Upper Triassic lacustrine deposits. Palaios 25:215–220

    Article  Google Scholar 

  • Southam G, Donald R (1999) A structural comparison of bacterial microfossils vs. ‘nanobacteria’ and nanofossils. Earth-Sci Rev 48:251–264

    Article  CAS  Google Scholar 

  • Southam G, Donald R, Röstad A et al (2001) Pyrite discs in coal: evidence for fossilized bacterial colonies. Geology 29:47–50

    Article  CAS  Google Scholar 

  • Spicer RA (1977) The pre-depositional formation of some leaf impressions. Palaeontology 20:907–912

    Google Scholar 

  • Spicer RA (1981) The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England. US Geol Surv Prof Paper 1143:1–77

    Google Scholar 

  • Staudigel H, Yayanos A, Chastain R et al (1998) Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett 164:233–244

    Article  CAS  Google Scholar 

  • Staudigel H, Furnes H, McLoughlin N et al (2008) 3.5 billion years of glass bioalteration: volcanic rocks as basis for microbial life? Earth-Sci Rev 89:156–176

    Article  CAS  Google Scholar 

  • Steele A, McCubbin FM, Fries M et al (2012) A reduced organic Carbon component in Martian basalts. Science 337:212–215

    Article  CAS  PubMed  Google Scholar 

  • Stenroos SK, DePriest PT (1998) SSU rDNA phylogeny of cladoniiform lichens. Am J Bot 85:1548–1559

    Article  CAS  PubMed  Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. Cambridge University Press, New York

    Google Scholar 

  • Stockey RA, Rothwell GW, Addy HD et al (2001) Mycorrhizal association of the extinct conifer Metasequoia milleri. Mycol Res 105:202–205

    Article  Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–29

    Google Scholar 

  • Stoodley P, Sauer K, Davies DG et al (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  PubMed  Google Scholar 

  • Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69:347–352

    Article  Google Scholar 

  • Straub KL, Schünhuber WA, Bucholz-Cleven BEE (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21:371–378

    Article  CAS  Google Scholar 

  • Strother PK, Battison L, Brasier MD et al (2011) Earth’s earliest non-marine eukaryotes. Nature 473:505–509

    Article  CAS  PubMed  Google Scholar 

  • Strullu-Derrien C, Kenrick P, Pressel S et al (2014) Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant-fungus symbioses. New Phytol 203:964–979

    Article  PubMed  Google Scholar 

  • Sugitani K, Grey K, Allwood A (2007) Diverse microstructures from Archaean chert from the Mount Goldsworthy–Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossils, or pseudofossils? Precambrian Res 158:228–262

    Article  CAS  Google Scholar 

  • Sugitani K, Lepot K, Nagaoka T et al (2010) Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley Pool Formation, in the Pilbara Craton, Western Australia. Astrobiology 10:899–920

    Article  PubMed  Google Scholar 

  • Sugitani K, Mimura K, Nagaoka T et al (2013) Microfossil assemblage from the 3400 Ma Strelley Pool Formation in the Pilbara Craton, Western Australia: results form a new locality. Precambrian Res 226:59–74

    Article  CAS  Google Scholar 

  • Summons RE, Lincoln SA (2012) Biomarkers: informative molecules for studies in geobiology. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 269–296

    Chapter  Google Scholar 

  • Tandon KK, Kumar S (1977) Discovery of annelid and arthropod remains from Lower Vindhyan rocks (Precambrian) of central India. Geophytology 7:126–130

    Google Scholar 

  • Taylor TN, Taylor EL (2000) The Rhynie chert ecosystem: a model for understanding fungal interactions. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 31–47

    Google Scholar 

  • Taylor T, Hass H, Kerp H (1997) A cyanolichen from the Lower Devonian Rhynie chert. Am J Bot 84:992–992

    Article  CAS  PubMed  Google Scholar 

  • Taylor TN, Hass H, Remy W et al (1995a) The oldest fossil lichen. Nature 378:244

    Article  CAS  Google Scholar 

  • Taylor TN, Remy W, Hass H et al (1995b) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573

    Article  Google Scholar 

  • Taylor TN, Krings M, Dotzler N (2012) Fungal endophytes in Astromyelon-type (Sphenophyta, Equisetales, Calamitaceae) roots from the Upper Pennsylvanian of France. Rev Palaeobot Palynol 171:9–18

    Article  Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2015) Fossil fungi. Academic, San Diego

    Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA et al (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Nat Acad Sci USA 98:2164–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18:995–998

    Article  CAS  Google Scholar 

  • Thulborn T (1990) Dinosaur tracks. Chapman and Hall, London

    Book  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552

    Article  CAS  PubMed  Google Scholar 

  • Timlin JA, Carden A, Morris MD et al (2000) Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal Chem 72:2229–2236

    Article  CAS  PubMed  Google Scholar 

  • Tomescu AMF, Rothwell GW, Mapes G (2001) Lyginopteris royalii sp. nov. from the Upper Mississippian of North America. Rev Paleobot Palynol 116:159–173

    Article  Google Scholar 

  • Tomescu AMF, Rothwell GW, Honegger R (2006) Cyanobacterial macrophytes in an Early Silurian (Llandovery) continental biota: Passage Creek, lower Massanutten Sandstone, Virginia, USA. Lethaia 39:329–338

    Article  Google Scholar 

  • Tomescu AMF, Honegger R, Rothwell GW (2008) Earliest fossil record of bacterial-cyanobacterial mat consortia: the early Silurian Passage Creek biota (440 Ma, Virginia, USA). Geobiology 6:120–124

    Article  CAS  PubMed  Google Scholar 

  • Tomescu AMF, Rothwell GW, Honegger R (2009) A new genus and species of filamentous microfossil of cyanobacterial affinity from Early Silurian fluvial environments (lower Massanutten Sandstone, Virginia, USA). Bot J Linn Soc 160:284–289

    Article  Google Scholar 

  • Toporski JKW, Steele A, Westall F et al (2002) Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochim Cosmochim Acta 66:1773–1791

    Article  CAS  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanisms of the glass-palagonite transformation. Geochim Cosmochim Acta 55:731–749

    Article  CAS  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1995) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160

    Article  CAS  Google Scholar 

  • Treiman AH (2003a) Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. Astrobiology 3:369–392

    Article  CAS  PubMed  Google Scholar 

  • Treiman AH (2003b) Traces of ancient Martian life in meteorite ALH84001: an outline of status in late 2003. Lunar and Planetary Institute, Houston, http://planetaryprotection.nasa.gov/summary/alh84001

    Google Scholar 

  • Trichet J, Defarge C (1995) Non-biologically supported organomineralization. Bull Inst Oceanograph Monaco 14:203–236

    Google Scholar 

  • Tyler SA, Barghoorn ES (1954) Occurrence of structurally preserved plants in pre-Cambrian rocks of the Canadian Shield. Science 119:606–608

    Article  CAS  PubMed  Google Scholar 

  • Tyler SA, Barghoorn ES (1963) Ambient pyrite grains in Precambrian cherts. Am J Sci 261:424–432

    Article  Google Scholar 

  • Ueno Y, Isozaki Y, Yurimoto H et al (2001a) Carbon isotopic signatures of individual Archean microfossils(?) from Western Australia. Int Geol Rev 43:196–212

    Article  Google Scholar 

  • Ueno Y, Maruyama S, Isozaki Y et al (2001b) Early Archean (ca. 3.5 Ga) microfossils and 13C-depleted carbonaceous matter in the North Pole area, Western Australia: field occurrence and geochemistry. In: Nakashima S, Maruyama S, Brack A et al (eds) Geochemistry and the origin of life. Universal Academy Press, Tokyo, pp 203–236

    Google Scholar 

  • Van Lith Y, Warthmann R, Vasconcelos C et al (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology 50:237–245

    Article  Google Scholar 

  • Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Sci Rev 74:197–240

    Article  CAS  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH et al (2007) Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38

    Article  CAS  Google Scholar 

  • van Zuilen MA, Lepland A, Teranes J et al (2003) Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Res 126:331–348

    Article  CAS  Google Scholar 

  • Vecht A, Ireland TG (2000) The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology. Geochim Cosmochim Acta 64:2719–2725

    Article  CAS  PubMed  Google Scholar 

  • Vinther J, Briggs DE, Prum RO et al (2008) The colour of fossil feathers. Biol Lett 4:522–525

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinther J, Briggs DE, Clarke J et al (2010) Structural coloration in a fossil feather. Biol Lett 6:128–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Visscher PT, Beukema J, van Gemerden H (1991) In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnol Oceanogr 36:1476–1480

    Article  CAS  Google Scholar 

  • Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeogr Palaeoclim Palaeoecol 219:87–100

    Article  Google Scholar 

  • Wacey D (2009) Early life on Earth: a practical guide. Springer, New York

    Book  Google Scholar 

  • Wacey D (2012) Earliest evidence for life on Earth: and Australia perspective. Aust J Earth Sci 59:153–166

    Article  CAS  Google Scholar 

  • Wacey D, McLoughlin N, Green OR et al (2006) The ~3.4 billion-year-old Strelley Pool Sandstone: a new window into early life on Earlt. Int J Astrobiol 5:333–342

    Article  Google Scholar 

  • Wacey D, Kilburn MR, McLoughlin N et al (2008) Use of NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c. 3400 Ma sandstone. J Geol Soc 165:43–53

    Article  CAS  Google Scholar 

  • Wacey D, Kilburn MR, Saunders M et al (2011a) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702

    Article  CAS  Google Scholar 

  • Wacey D, Saunders M, Brasier MD et al (2011b) Earliest microbially mediated pyrite oxidation in ~3.4 billion-year-old sediments. Earth Planet Sci Let 301:393–402

    Article  CAS  Google Scholar 

  • Waldbauer JR, Sherman LS, Sumner DY et al (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47

    Article  CAS  Google Scholar 

  • Walsh MM (1992) Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res 54:271–293

    Article  CAS  PubMed  Google Scholar 

  • Walsh MM, Westall F (2003) Archean biofilms preserved in the Swaziland Supergroup, South Africa. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Kluwer, Dordrecht, pp 307–316

    Chapter  Google Scholar 

  • Walter MR (1983) Archean stromatolites: evidence of the Earth's earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 187–213

    Google Scholar 

  • Walter MR, Oehler JH, Oehler DZ (1976) Megascopic algae 1300 million years old from the Belt Supergroup, Montana: a reinterpretation of Walcott's Helminthoidichnites. J Paleo 50:872–881

    Google Scholar 

  • Walter MR, Du RL, Horodyski RJ (1990) Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana. Am J Sci 290-A:133–148

    Google Scholar 

  • Wang B, Yeun LH, Xue JY et al (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525

    Article  PubMed  Google Scholar 

  • Wang B, Zhao F, Zhang H et al (2012) Widespread pyritization of insects in the Early Cretaceous Jehol Biota. Palaios 27:707–711

    Article  Google Scholar 

  • Waterbury JB, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westall F (1999) The nature of fossil bacteria: a guide to the search for extraterrestrial life. J Geophys Res—Planets 104(E7):16437–16451

    Article  Google Scholar 

  • Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archean cherts and BIFs of the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330

    Article  CAS  Google Scholar 

  • Westall F, Boni L, Guerzoni E (1995) The experimental silicification of microorganisms. Palaeontology 38:495–528

    Google Scholar 

  • Westall F, de Wit MJ, Dann J et al (2001) Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res 106:93–116

    Article  CAS  Google Scholar 

  • Westall F, de Vries ST, Nijman W et al (2006) The 3.446 Ga “Kitty’s Gap Chert”, an early Archean microbial ecosystem. Geol S Am Special Paper 405:105–131

    Google Scholar 

  • Wierzchos J, Berlanga M, Ascaso C et al (1996) Micromorphological characterization and lithification of microbial mats from the Ebro Delta (Spain). Int Microbiol 9:289–295

    Google Scholar 

  • Wilby PR, Briggs DE (1997) Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios 30:493–502

    Article  Google Scholar 

  • Wilby PR, Briggs DE, Bernier P et al (1996) Role of microbial mats in the fossilization of soft tissues. Geology 24:787–790

    Article  CAS  Google Scholar 

  • Wills MA (2001) Disparity vs. diversity. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 495–500

    Chapter  Google Scholar 

  • Wilmeth DT, Dornbos SQ, Isbell JL (2014) Putative domal microbial structures in fluvial siliciclastic facies of the Mesoproterozoic (1.09 Ga) Copper Harbor Conglomerate, Upper Peninsula of Michigan, USA. Geobiology 12:99–108

    Article  PubMed  Google Scholar 

  • Wilson AS, Dodson HI, Janaway RC, Pollard AM, Tobin DJ (2007) Selective biodegradation in hair shafts derived from archaeological, forensic and experimental contexts. Br J Dermatol 157:450–457

    Article  CAS  PubMed  Google Scholar 

  • Wolfe AP, Csank AZ, Reyes AV et al (2012) Pristine Early Eocene wood buried deeply in kimberlite from northern Canada. PLoS One 7, e45537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolhouse HW (1984) The biochemistry and regulation of senescence in chloroplasts. Can J Bot 62:2934–2942

    Article  CAS  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (2012) Microbial extracellular polymeric substances: characterization, structure and function. Springer Science & Business Media, Heidelberg, 258p

    Google Scholar 

  • Wright DT, Wacey D (2004) Sedimentary dolomite: a reality check. Geol Soc Lond Special Pub 235:65–74

    Article  CAS  Google Scholar 

  • Wuttke M (1983a) Weichteilerhaltung durch lithifizierte Mikoorganismen bei mittel-eozänen Vertebraten aus dem Ölschiefer der ‘Grube Messel’ bei Darmstadt. Senckenbergiana Lethaea 64:503–527

    Google Scholar 

  • Wuttke M (1983b) Aktuopaläontologische Studien über den Zerfall von Wirbeltieren: Teil 1, Anura. Senckenbergiana Lethaea 64:529–560

    Google Scholar 

  • Xiao S, Knoll AH, Kaufman AJ et al (1997) Neoproterozoic fossils in Mesoproterozoic rocks? Chamostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res 84:197–220

    Article  CAS  Google Scholar 

  • Xiao S, Zhang Y, Knoll AH (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553–558

    Article  CAS  Google Scholar 

  • Xiao S, Yuan X, Steiner M et al (2002) Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. J Paleo 76:347–376

    Article  Google Scholar 

  • Xiao S, Schiffbauer JD, McFadden KA et al (2010) Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation. Earth Planet Sci Lett 297:481–495

    Article  CAS  Google Scholar 

  • Xiao S, Droser M, Gehling JG et al (2013) Affirming life aquatic for the Ediacara biota in China and Australia. Geology 41:1095–1098

    Article  Google Scholar 

  • Yan Y, Liu Z (1993) Significance of eukaryotic organisms in the microfossil flora of Changcheng system. Acta Micropalaeontol Sin 10:167–180

    Google Scholar 

  • Yin L-M (1997) Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China. Rev Palaeobot Palynol 98:15–25

    Article  Google Scholar 

  • Yin Z, Liu P, Li G et al (2014) Biological and taphonomic implications of Ediacaran fossil embryos undergoing cytokinesis. Gondwana Res 25:1019–1026

    Article  Google Scholar 

  • Yochelson EL, Fedonkin MA (2000) A new tissue-grade organism 1.5 billion years old from Montana. Proc Biol Soc Washington 113:843–847

    Google Scholar 

  • Yoshida Y (1962) Nuclear control of chloroplast activity in Elodea leaf cells. Protoplasma 54:476–492

    Article  Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    Article  CAS  PubMed  Google Scholar 

  • Zegers TE, de Wit MJ, Dann J, White SH (1998) Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10:250–259

    Article  Google Scholar 

  • Zhang F, Kearns SL, Orr PJ et al (2010) Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463:1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, O’Connor J, Huchzermeyer F et al (2013) Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature 495:507–511

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Gehling JG, Xiao S et al (2008) Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology 36:867–870

    Article  Google Scholar 

  • Zolotov MY, Shock EL (2000) An abiotic origin for hydrocarbons in the Allan Hills 84001 Martian meteorite through cooling of magmatic and impact-generated gases. Meteorit Planet Sci 35:629–638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Emma Fryer for momentous help with obtaining permissions from publishers to use copyrighted material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru M. F. Tomescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tomescu, A.M.F., Klymiuk, A.A., Matsunaga, K.K.S., Bippus, A.C., Shelton, G.W.K. (2016). Microbes and the Fossil Record: Selected Topics in Paleomicrobiology. In: Hurst, C. (eds) Their World: A Diversity of Microbial Environments. Advances in Environmental Microbiology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28071-4_3

Download citation

Publish with us

Policies and ethics