Trust the Words: Insights into the Role of Language in Trust Building in a Digitalized World

  • Regina Jucks
  • Gesa A. Linnemann
  • Franziska M. Thon
  • Maria Zimmermann
Chapter
Part of the Progress in IS book series (PROIS)

Abstract

There is more to words than just the meanings they convey. Especially in online settings in which information about others is limited, the words employed play an important role in assessing an interlocutor’s trustworthiness. Therefore, based on ability, benevolence, and integrity as the components of trustworthiness, we investigated word usage in three exemplary digitalized settings. The first scenario is a peer-to-peer discussion in online forums (e.g., when students need support in overcoming their procrastination). The second scenario is searching for online health advice (e.g., retrieving health information from other users with varying medical expertise). The third is online communication with spoken dialogue systems (e.g., asking Apple’s® Siri® how to find one’s way in an unknown town). Referring to the word usage in the respective communication setting, we address central language-related trust issues: (a) self-disclosure and the communication of empathy, (b) technical language and cues regarding the fragility of evidence, and (c) perceiving a shared view through lexical overlaps. The contribution ends with an outline of future research on the interplay between these three issues and trust.

Keywords

Trust Communication Self-disclosure Spoken dialogue systems Technical language 

References

  1. Afifi, T., & Steuber, K. (2009). The Revelation Risk Model (RRM): Factors that predict the revelation of secrets and the strategies used to reveal them. Communication Monographs, 76(2), 144–176. doi: 10.1080/03637750902828412.CrossRefGoogle Scholar
  2. Allen, J. F., Byron, D. K., Dzikovska, M., Ferguson, G., Galescu, L., & Stent, A. (2001). Toward conversational human–computer interaction. AI Magazine, 22(4), 1–9. doi: 10.1609/aimag.v22i4.1590.Google Scholar
  3. Barak, A., & Gluck-Ofri, O. (2007). Degree and reciprocity of self-disclosure in online forums. CyberPsychology & Behavior, 10, 407–417. doi: 10.1089/cpb.2006.9938.CrossRefGoogle Scholar
  4. Bradac, J. J., Mulac, A., & House, A. (1988). Lexical diversity and magnitude of convergent versus divergent style shifting: Perceptual and evaluative consequences. Language & Communication, 8(3–4), 213–228. doi: 10.1016/0271-5309(88)90019-5.CrossRefGoogle Scholar
  5. Branigan, H., & Pearson, J. (2006). Alignment in human-computer interaction. In K. Fischer (Ed.). How people talk to computers, robots, and other artificial communication partners. Proceedings of the Workshop Hansewissenschaftskolleg (pp. 140–156). http://www.sfbtr8.uni-bremen.de/papers/SFB_TR_8_Rep_010-09_2006.pdf. Accessed 9 September 2015.
  6. Branigan, H. P., Pickering, M. J., Pearson, J., & McLean, J. F. (2010). Linguistic alignment between people and computers. Journal of Pragmatics, 42(9), 2355–2368. doi: 10.1016/j.pragma.2009.12.012.CrossRefGoogle Scholar
  7. Branigan, H. P., Pickering, M. J., Pearson, J., McLean, J. F., & Brown, A. (2011). The role of beliefs in lexical alignment: Evidence from dialogs with humans and computers. Cognition, 121(1), 41–57. doi: 10.1016/j.cognition.2011.05.011.CrossRefGoogle Scholar
  8. Brennan, S. E. (1996). Lexical entrainment in spontaneous dialog. Proceedings of ISSD, 96, 41–44.Google Scholar
  9. Bromme, R. (1996). Fachbegriffe. In G. Strube, B. Becker, C. Freska, U. Hahn, G. Palm, & K. Opwis (Eds.), Wörterbuch der Kognitionswissenschaft (p. 184). Stuttgart: Klett-Cotta.Google Scholar
  10. Bromme, R., & Jucks, R. (2014). Fragen Sie Ihren Arzt oder Apotheker: Die Psychologie der Experten-Laien-Kommunikation. In M. Blanz, A. Florack, & U. Piontkowski (Eds.), Kommunikation. Eine interdisziplinäre Einführung (pp. 237–249). Stuttgart: Kohlhammer.Google Scholar
  11. Clark, H. H. (1996). Using language. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  12. Clark, H. H., & Brennan, S. E. (1991). Grounding in communication. In L. B. Resnick, J. Levine, & S. D. Behrend (Eds.), Perspectives on socially shared cognition (pp. 127–149). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  13. Cozby, P. (1973). Self-disclosure: A literature review. Psychological Bulletin, 79, 73–91. doi: 10.1037/h0033950.CrossRefGoogle Scholar
  14. Danet, B. (1980). “Baby” or “fetus”? Language and the construction of reality in a manslaughter trial. Semiotica, 32(3-4), 187–220.CrossRefGoogle Scholar
  15. DeVito, J. A. (1995). Human communication. New York, NY: Addison Wesley Longman.Google Scholar
  16. Edlund, J., Gustafson, J., Heldner, M., & Hjalmarsson, A. (2008). Towards human-like spoken dialogue systems. Speech Communication, 50(8-9), 630–645. doi: 10.1016/j.specom.2008.04.002.CrossRefGoogle Scholar
  17. Feng, J., Lazar, J., & Preece, J. (2004). Empathy and online interpersonal trust: A fragile relationship. Behaviour & Information Technology, 23(2), 97–106.CrossRefGoogle Scholar
  18. Frye, N. E., & Dornisch, M. M. (2010). When is trust not enough? The role of perceived privacy of communication tools in comfort with self-disclosure. Computers in Human Behavior, 26, 1120–1127. doi: 10.1016/j.chb.2010.03.016 CrossRefGoogle Scholar
  19. Giles, H., Coupland, N., & Coupland, J. (1991). Accommodation theory: Communication, context, and consequence. In H. Giles, J. Coupland, & N. Coupland (Eds.), Contexts of accommodation (pp. 1–68). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  20. Grand View Research. (2014). Intelligent virtual assistant market analysis and segment forecasts to 2020. http://www.grandviewresearch.com/industry-analysis/intelligent-virtual-assistant-industry. Accessed 15 April 2015.
  21. Hu, Y., & Sundar, S. S. (2009). Effects of online health sources on credibility and behavioral intentions. Communication Research, 37(1), 105–132. doi: 10.1177/0093650209351512.CrossRefGoogle Scholar
  22. Ickes, W. (1997). Empathic accuracy. New York, NY: Guildford Press.Google Scholar
  23. Ickes, W., Stinson, L., Bissonnette, V., & Garcia, S. (1990). Naturalistic social cognition: Empathic accuracy in mixed-sex dyads. Journal of Personality and Social Psychology, 59, 730–742.CrossRefGoogle Scholar
  24. Ignatius, E., & Kokkonen, M. (2007). Factors contributing to verbal self-disclosure. Nordic Psychology, 59, 362–391. doi: 10.1027/1901-2276.59.4.362.CrossRefGoogle Scholar
  25. Ireland, M. E., & Pennebaker, J. W. (2010). Language style matching in writing: Synchrony in essays, correspondence, and poetry. Journal of Personality and Social Psychology, 99(3), 549–571. doi: 10.1177/0956797610392928.CrossRefGoogle Scholar
  26. Joinson, A. N., & Paine, C. B. (2007). Self-disclosure, privacy and the Internet. In A. N. Joinson, K. Y. A. McKenna, T. Postmes, & U.-D. Reips (Eds.), Oxford handbook of Internet psychology (pp. 237–252). Oxford, England: Oxford University Press.Google Scholar
  27. Jourard, S. M. (1971). Self-disclosure: An experimental analysis of the transparent self. New York, NY: Wiley.Google Scholar
  28. Jourard, S. M., & Lasakow, P. (1958). Some factors in self-disclosure. Journal of Abnormal and Social Psychology, 56(1), 91–98. doi: 10.1037/h0043357.CrossRefGoogle Scholar
  29. Jucks, R., & Bromme, R. (2007). Choice of words in doctor–patient communication: An analysis of health-related Internet sites. Health Communication, 21, 267–277. doi: 10.1080/10410230701307865 CrossRefGoogle Scholar
  30. Jucks, R., Päuler, L., & Brummernhenrich, B. (2016). “I need to be explicit: You’re wrong:” Impact of face threats on social evaluations in online instructional communication. Interacting with Computers, 28(1), 73–84. doi: 10.1093/iwc/iwu032.
  31. Jucks, R., & Paus, E. (2011). What makes a word difficult? Insights into the mental representation of technical terms. Metacognition Learning, 7(2), 91–111. doi: 10.1007/s11409-011-9084-6.CrossRefGoogle Scholar
  32. Lev-Ari, S., & Keysar, B. (2010). Why don’t we believe non-native speakers? The influence of accent on credibility. Journal of Experimental Social Psychology, 46, 1093–1096. doi: 10.1016/j.jesp.2010.05.025 CrossRefGoogle Scholar
  33. Linnemann, G. A., & Jucks, R. (2016). “As in the question, so in the answer?” Language style of human and machine speakers affects interlocutors’ convergence on wordings. Journal of Language and Social Psychology. doi: 10.1177/0261927X15625444
  34. López-Cózar, R., Callejas, Z., Griol, D., & Quesada, J. F. (2015). Review of spoken dialogue systems. Loquens, 1(2), e012.CrossRefGoogle Scholar
  35. Mavridis, N. (2015). A review of verbal and non-verbal human–robot interactive communication. Robotics and Autonomous Systems, 63, 22–35.CrossRefGoogle Scholar
  36. Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734.Google Scholar
  37. McAllister, H. A., & Bregman, N. J. (1985). Reciprocity effects with intimate and nonintimate self-disclosure: The importance of establishing baseline. Journal of Social Psychology, 125, 775–776. doi: 10.1080/00224545.1985.9713552.CrossRefGoogle Scholar
  38. Moll, R., & Pieschl, S. (2015). Expecting collective privacy – A new perspective on trust in online communication. In B. Bloebaum (Ed.), Trust and communication in a digitalized world. Models and concepts of trust research. Heidelberg: Springer.Google Scholar
  39. Nass, C., & Lee, K. M. (2000, April). Does computer-generated speech manifest personality? An experimental test of similarity-attraction. In Proceedings of the CHI 2000 Conference on Human factors in computing systems, The Hague, Netherlands. doi:10.1145/332040.332452.Google Scholar
  40. Omarzu, J. (2000). A self-disclosure decision model: Determining how and when individuals will self-disclose. Personality and Social Psychology Review, 4, 174–185. doi: 10.1207/S15327957PSPR040205.CrossRefGoogle Scholar
  41. Petrie, K., & Abell, W. (1995). Responses of parasuicides to a computerized interview. Computers in Human Behavior, 10(4), 415–418.CrossRefGoogle Scholar
  42. Petronio, S. S. (2002). Boundaries of privacy: Dialectics of disclosure. Albany, NY: SUNY Press.Google Scholar
  43. Pickering, S., & Garrod, S. (2004). Towards a mechanistic psychology of dialogue. Behavioral and Brain Sciences, 27, 169–226.Google Scholar
  44. Scharrer, L., Bromme, R., Britt, M. A., & Stadtler, M. (2012). The seduction of easiness: How science depictions influence laypeople’s reliance on their own evaluation of scientific information. Learning and Instruction, 22(3), 231–243. doi: 10.1016/j.learninstruc.2011.11.004.CrossRefGoogle Scholar
  45. Steel, J. L. (1991). Interpersonal correlates of trust and self-disclosure. Psychological Reports, 68, 1319–1320. doi: 10.2466/PR0.68.4.CrossRefGoogle Scholar
  46. Stehr, N., & Grundmann, R. (2015). Expertenwissen - Die Kultur und die Macht von Experten, Beratern und Ratgebern. Weilerswist: Velbrück Wissenschaft.Google Scholar
  47. Thiebach, M., Mayweg-Paus, E., & Jucks, R. (2015). “Probably true” says the expert: How two types of lexical hedges influence students’ evaluation of scientificness. European Journal of Psychology of Education, 30(3), 369–384. doi: 10.1007/s10212-014-0243-4.CrossRefGoogle Scholar
  48. Thomm, E., & Bromme, R. (2012). It should at least seem scientific! Textual features of “scientificness” and their impact on lay assessments of online information. Science Education, 96(2), 187–211.CrossRefGoogle Scholar
  49. Thon, F. M., & Jucks, R. (submitted). Believing in expertise: How authors’ credentials and language use influence the credibility of online health information.Google Scholar
  50. Thon, F. M., & Jucks, R. (2014). Regulating privacy in interpersonal online communication: The role of self-disclosure. Studies in Communication Sciences, 2014, 3–11. doi: 10.1016/j.scoms.2014.03.012.CrossRefGoogle Scholar
  51. Torrey, C., Powers, A., Marge, M., Fussell, S. R., & Kiesler, S. (2006, March). Effects of adaptive robot dialogue on information exchange and social relations. In Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction (pp. 126–133). ACM.Google Scholar
  52. Tseng, S., & Fogg, B. J. (1999). Credibility and computing technology. Communications of the ACM, 42(5), 39–44.CrossRefGoogle Scholar
  53. van Baaren, R. B., Holland, R. W., Steenaert, B., & van Knippenberg, A. (2003). Mimicry for money: Behavioral consequences of imitation. Journal of Experimental Social Psychology, 39(4), 393–398. doi: 10.1016/S0022-1031(03)00014-3.CrossRefGoogle Scholar
  54. Van Der Wege, M. M. (2009). Lexical entrainment and lexical differentiation in reference phrase choice. Journal of Memory and Language, 60(4), 448–463. doi: 10.1016/j.jml.2008.12.003.CrossRefGoogle Scholar
  55. Weisband, S., & Kiesler, S. (1996, April). Self disclosure on computer forms: Meta-analysis and implications. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 3–10). ACM.Google Scholar
  56. Weizenbaum, J. (1966). ELIZA – a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36–45.CrossRefGoogle Scholar
  57. Windshuttle, K., & Elliot, E. (1999). Writing, researching, communicating. Communication skills for the information age (3rd ed.). Sydney: Irwin/McGraw-Hill.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Regina Jucks
    • 1
  • Gesa A. Linnemann
    • 1
  • Franziska M. Thon
    • 1
  • Maria Zimmermann
    • 1
  1. 1.University of MünsterMünsterGermany

Personalised recommendations