Skip to main content

Noisy Dynamical Systems with Time Delay: Some Basic Analytical Perturbation Schemes with Applications

  • Chapter
  • First Online:
Control of Self-Organizing Nonlinear Systems

Part of the book series: Understanding Complex Systems ((UCS))

  • 2037 Accesses

Abstract

Systems with time delay, a rather prominent branch in applied dynamical systems theory, constitute a special case of functional differential equations for which the general mathematical theory is fairly well developed and largely parallels the theory of ordinary differential equations. Hence analytic concepts like bifurcation theory, adiabatic elimination, global attractors, invariant manifolds and others can be used to study dynamical behaviour of systems with time delay if some care is applied to take special features of infinite dimensional phase spaces into account. Simple analytic perturbation schemes, frequently used to gain insight for ordinary differential equations, can be applied to time delay dynamics as well. However, such approaches seem to be used infrequently within the physics community, probably because of a lack of easily accessible expositions. Here we review some elementary and well established concepts for the analytical treatment of time delay dynamics, even when subjected to noise. We cover normal form reduction and adiabatic elimination, stochastic linearisation of time delay dynamics with noise, and some elements of weakly nonlinear- and bifurcation analysis. These tools will be illustrated with applications in control problems, time delay autosynchronisation, coherence resonance, and the computation and structure of power spectra in noisy time delay systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Einstein, Ann. Phys. 322, 549 (1905)

    Article  Google Scholar 

  2. H.A. Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  4. A. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70(1), 223 (1998)

    Article  ADS  Google Scholar 

  6. R. Klages, W. Just, C. Jarzynski (eds.), Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (Wiley-VCH, Weinheim, 2013)

    MATH  Google Scholar 

  7. W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984)

    MATH  Google Scholar 

  8. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  9. L. Arnold, Random Dynamical Systems (Springer, Berlin, 2002)

    Google Scholar 

  10. R. Bellmann, K.L. Cooke, Differential-Difference Equations (Acad. Press, New York, 1963)

    MATH  Google Scholar 

  11. E. Fick, G. Sauermann, The Quantum Statistics of Dynamic Processes (Springer, Berlin, 1990)

    Book  Google Scholar 

  12. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics 2 (Nonequilibrium statistical mechanics) (Springer, Berlin, 1991)

    MATH  Google Scholar 

  13. T. Erneux, Applied Delay Differential Equations (Springer, Berlin, 2009)

    MATH  Google Scholar 

  14. F.M. Atay (ed.), Complex Time-Delay Systems (Springer, Berlin, Heidelberg, 2010)

    MATH  Google Scholar 

  15. W. Just, A. Pelster, M. Schanz, E. Schöll (eds.), Delayed Complex Systems, Theme Issue of Phil. Trans. R. Soc. A 368, 301–513 (2010)

    Google Scholar 

  16. V. Flunkert, I. Fischer, E. Schöll (eds.), Dynamics, control and information in delay-coupled systems, Theme Issue of Phil. Trans. R. Soc. A 371, 20120465 (2013)

    Google Scholar 

  17. J.Q. Sun, G. Ding (eds.), Advances in Analysis and Control of Time-Delayed Dynamical Systems (World Scientific, Singapore, 2013)

    Google Scholar 

  18. M. Soriano, J. Garca-Ojalvo, C. Mirasso, I. Fischer, Rev. Mod. Phys. 85, 421 (2013)

    Google Scholar 

  19. J.K.  Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations (Springer, New York, 1993)

    Google Scholar 

  20. K. Engelborghs, DDE-BIFTOOL: a Mathlab package for bifurcation analysis of delay differential equations. http://www.cs.kuleuven.ac.be/koen/delay/ddebiftool.shtml

  21. L. Pecora, T. Carroll, Phys. Rev. Lett. 80, 2109 (1998)

    Article  ADS  Google Scholar 

  22. S. Yanchuk, M. Wolfrum, P. Hövel, E. Schöll, Phys. Rev. E 74, 026201 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Wolfrum, S. Yanchuk, P. Hövel, E. Schöll, Eur. Phys. J. Special Topics 191, 91 (2010)

    Article  ADS  Google Scholar 

  24. T.D. Frank, P.J. Beck, R. Friedrich, Phys. Rev. E 68, 021912 (2003)

    Article  ADS  Google Scholar 

  25. T. Frank, Phys. Rev. E 72, 011112 (2005)

    Article  ADS  Google Scholar 

  26. A. Nayfeh, Perturbation Methods (Wiley-VCH, Weinheim, 2000)

    Book  MATH  Google Scholar 

  27. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65(3), 851 (1993)

    Article  ADS  Google Scholar 

  28. W. Just, H. Benner, C. v. Loewenich. Physica D 199, 33 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. P.M. Geffert, A. Zakharova, A. Vüllings, W. Just, E. Schöll, Eur. Phys. J. B 87, 291 (2014)

    Article  ADS  Google Scholar 

  30. H. Haken, Synergetics: Introduction and Advanced Topics (Springer, Berlin, 2004)

    Book  Google Scholar 

  31. A. Halanay, Differential Equations: Stability, Oscillations, Time Lags (Acad. Press, New York, 1966)

    MATH  Google Scholar 

  32. A. Amann, E. Schöll, W. Just, Physica A 373, 191 (2007)

    Article  ADS  Google Scholar 

  33. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, Adv. Comp. Math. 5, 329 (1996)

    Article  MathSciNet  Google Scholar 

  34. F. Giannakopulos, A. Zapp, Physica D 159, 215 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. B.F. Redmond, V.G. LeBlanc, A. Longtin, Physica D 166, 131 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  36. N.G. van Kampen, Phys. Rep. 124(2), 69 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  37. U. Küchler, B. Mensch, Stoch. Stoch. Rep. 40, 23 (1992)

    Article  Google Scholar 

  38. K. Pyragas, Phys. Lett. A 170, 421 (1992)

    Article  ADS  Google Scholar 

  39. E. Schöll, H.G. Schuster (eds.), Handbook of Chaos Control (Wiley-VCH, Weinheim, 2008)

    MATH  Google Scholar 

  40. B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, E. Schöll, Phys. Rev. Lett. 98, 114101 (2007)

    Article  ADS  Google Scholar 

  41. W. Just, B. Fiedler, M. Georgi, V. Flunkert, P. Hövel, E. Schöll, Phys. Rev. E 76, 026210 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. G. Brown, C.M. Postlethwaite, M. Silber, Physica D 240, 859 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  43. G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Phys. Rev. Lett. 71, 807 (1993)

    Article  ADS  Google Scholar 

  44. R. Aust, P. Hövel, J. Hizanidis, E. Schöll, Eur. Phys. J. Spec. Top. 187, 77 (2010)

    Article  Google Scholar 

  45. N.B. Janson, A.G. Balanov, E. Schöll, Phys. Rev. Lett. 93, 010601 (2004)

    Article  ADS  Google Scholar 

  46. O.V. Ushakov, H.J. Wünsche, F. Henneberger, I.A. Khovanov, L. Schimansky-Geier, M.A. Zaks, Phys. Rev. Lett. 95, 123903 (2005)

    Article  ADS  Google Scholar 

  47. A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, J. Kurths, Phys. Rev. E 81, 011106 (2010)

    Article  ADS  Google Scholar 

  48. A. Zakharova, A. Feoktistov, T. Vadivasova, E. Schöll, Eur. Phys. J. Spec. Top. 222, 2481 (2013)

    Article  Google Scholar 

  49. V. Semenov, A. Feoktistov, T. Vadivasova, E. Schöll, A. Zakharova, Chaos 25, 033111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  50. E. Schöll, A.G. Balanov, N.B. Janson, A.B. Neiman, Stoch. Dyn. 5, 281 (2005)

    Article  MathSciNet  Google Scholar 

  51. J. Pomplun, A. Amann, E. Schöll, Europhys. Lett. 71, 366 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  52. B. Dmitriev, Y. Zharkov, S. Sadovnikov, V. Skorokhodov, A. Stepanov, Tech. Phys. Lett. 37, 1082 (2011)

    Article  ADS  Google Scholar 

  53. J.L.A. Dubbeldam, B. Krauskopf, D. Lenstra, Phys. Rev. E 60, 6580 (1999)

    Article  ADS  Google Scholar 

  54. G. Giacomelli, M. Giudici, S. Balle, J.R. Tredicce, Phys. Rev. Lett. 84, 3298 (2000)

    Article  ADS  Google Scholar 

  55. J.F.M. Avila, H.L.D. de S. Cavalcante, J.R.R. Leite. Phys. Rev. Lett. 93, 144101 (2004)

    Google Scholar 

  56. C. Otto, B. Lingnau, E. Schöll, K. Lüdge, Opt. Express 22, 13288 (2014)

    Article  ADS  Google Scholar 

  57. D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, Europhys. Lett. 103, 14002 (2013)

    Article  ADS  Google Scholar 

  58. J. Hizanidis, E. Schöll, Phys. Rev. E 78, 066205 (2008)

    Article  ADS  Google Scholar 

  59. Y. Huang, H. Qin, W. Li, S. Lu, J. Dong, H.T. Grahn, Y. Zhang, Europhys. Lett. 105, 47005 (2014)

    Article  ADS  Google Scholar 

  60. M.E. Bleich, J.E.S. Socolar, Phys. Lett. A 210, 87 (1996)

    Article  ADS  Google Scholar 

  61. A. Vüllings, E. Schöll, B. Lindner, Eur. Phys. J. B 87, 31 (2014)

    Article  ADS  Google Scholar 

  62. J. Kottalam, K. Lindenberg, B.J. West, J. Stat. Phys. 42, 979 (1986)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG in the framework of SFB 910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Just .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Just, W., Geffert, P.M., Zakharova, A., Schöll, E. (2016). Noisy Dynamical Systems with Time Delay: Some Basic Analytical Perturbation Schemes with Applications. In: Schöll, E., Klapp, S., Hövel, P. (eds) Control of Self-Organizing Nonlinear Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-28028-8_8

Download citation

Publish with us

Policies and ethics