Skip to main content

On the Interplay of Noise and Delay in Coupled Oscillators

  • Chapter
  • First Online:
Control of Self-Organizing Nonlinear Systems

Part of the book series: Understanding Complex Systems ((UCS))

  • 2117 Accesses

Abstract

Coupling delays can play an important role in the dynamics of various networks, such as coupled semiconductor lasers, communication networks, genetic transcription circuits or the brain. A well established effect of a delay is to induce multistability: In oscillatory systems a delay gives rise to coexistent periodic orbits with different frequencies and oscillation patterns. Adding noise to the dynamics, the network switches stochastically between these delay-induced orbits. For phase oscillators, we compute analytically the distribution of frequencies, the robustness to noise and their dependence on system parameters as the coupling strength and coupling delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Erneux, Applied Delay Differential Equations (Springer, New York, 2009)

    Google Scholar 

  2. V. Flunkert, I. Fischer, E. Schöll (eds.), Theme IssueDynamics, control and information in delay-coupled systems” (Phil. Trans. Roy. Soc. A, 2013), vol. 371 (1999), p. 20120465

    Google Scholar 

  3. M.C. Soriano, J. Garcia-Ojalvo, C.R. Mirasso, I. Fischer, Rev. Mod. Phys. 85, 421 (2013)

    Article  ADS  Google Scholar 

  4. L. Chen, K. Aihara, IEEE Trans. Circuits Syst. I 49, 602 (2002)

    Article  MathSciNet  Google Scholar 

  5. G. Stepan (ed.), Theme IssueDelay effects in brain dynamics” (Phil. Trans. Roy. Soc. A, 2009), vol. 367 (1891), pp. 1059–1212

    Google Scholar 

  6. W. Wang, J. Slotine, IEEE Trans. Automat. Control 51, 712717 (2006)

    Google Scholar 

  7. W. Lu, F.M. Atay, J. Jost, Netw. Heterogen. Media 6, 329 (2011)

    Article  MathSciNet  Google Scholar 

  8. C. Masoller, Phys. Rev. Lett. 88, 034102 (2002)

    Article  ADS  Google Scholar 

  9. S. Kim, S.H. Park, C.S. Ryu, Phys. Rev. Lett. 79 (1997)

    Google Scholar 

  10. R. Lang, K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980)

    Article  ADS  Google Scholar 

  11. S. Yanchuk, P. Perlikowski, Phys. Rev. E 79, 046221 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Sieber, M. Wolfrum, M. Lichtner, S. Yanchuk, Discrete Continuous Dyn. Syst. 33, 3109 (2013)

    Article  MathSciNet  Google Scholar 

  13. M. Golubitsky, I. Stewart, The Symmetry Perspective (Birkhauser, 2003)

    Google Scholar 

  14. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984)

    Book  MATH  Google Scholar 

  15. Y. Kuramoto, Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, 789 (1997)

    Article  MathSciNet  Google Scholar 

  16. H. Daido, Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, 807 (1997)

    Article  Google Scholar 

  17. J. Acebrón, L. Bonilla, C.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  18. J. Foss, A. Longtin, B. Mensour, J. Milton, Phys. Rev. Lett. 76, 708 (1996)

    Article  ADS  Google Scholar 

  19. J. Foss, F. Moss, J. Milton, Phys. Rev. E 55, 4536 (1997)

    Article  ADS  Google Scholar 

  20. M. Rabinovich, P. Varona, A. Selverston, H. Abarbanel, Rev. Mod. Phys. 78, 1213 (2006)

    Article  ADS  Google Scholar 

  21. O. D’Huys, R. Vicente, T. Erneux, J. Danckaert, I. Fischer, Chaos 18, 037116 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. O. D’Huys, I. Fischer, J. Danckaert, R. Vicente, Chaos 20, 043127 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. P. Perlikowski, S. Yanchuk, O.V. Popovych, P.A. Tass, Phys. Rev. E 82, 036208 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. C.U. Choe, T. Dahms, P. Hövel, E. Schöll, Phys. Rev. E 81, 025205(R) (2010)

    Article  ADS  Google Scholar 

  25. A. Vüllings, E. Schöll, B. Lindner, Eur. Phys. J. B 87, 31 (2014)

    Article  ADS  Google Scholar 

  26. C.R.S. Williams, F. Sorrentino, T.E. Murphy, R. Roy, Chaos 23, 043117 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Earl, S. Strogatz, Phys. Rev. E 67, 036204 (2003)

    Article  ADS  Google Scholar 

  28. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 2108 (1998)

    Article  ADS  Google Scholar 

  29. V. Flunkert, S. Yanchuk, T. Dahms, E. Schöll, Phys. Rev. Lett. 105(25), 254101 (2010). doi:10.1103/PhysRevLett.105.254101

    Article  ADS  Google Scholar 

  30. O. D’Huys, I. Fischer, J. Danckaert, R. Vicente, Phys. Rev. E 83, 046223 (2011)

    Article  ADS  Google Scholar 

  31. H.G. Schuster, P. Wagner, Progress Theoret. Phys. 81, 939 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  32. B. Lysyansky, Y. Maestrenko, P. Tass, Int. J. Bifurcat. Chaos 18, 1791 (2008)

    Article  Google Scholar 

  33. J. Mørk, B. Tromborg, J. Mark, IEEE J. Quantum Electron. 28, 93 (1992)

    Article  ADS  Google Scholar 

  34. O. D’Huys, T. Jüngling, W. Kinzel, Phys. Rev. E 90, 032918 (2014)

    Article  ADS  Google Scholar 

  35. J. Mørk, B. Semkow, B. Tromborg, Electron. Lett. 26, 609 (1990)

    Article  Google Scholar 

  36. H. Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  37. B. McNamara, K. Wiesenfeld, Phys. Rev. A 39, 4854 (1989)

    Article  ADS  Google Scholar 

  38. T. Ohira, Y. Sato, Phys. Rev. Lett. 82, 2811 (1999)

    Article  ADS  Google Scholar 

  39. C. Masoller, Physica D 168–169, 171 (2002)

    Article  Google Scholar 

  40. K. Hicke, X. Porte, I. Fischer, Phys. Rev. E 88, 052904 (2013)

    Article  ADS  Google Scholar 

  41. T. Jüngling, O. D’Huys, W. Kinzel, Phys. Rev. E 91, 062918 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. T. Heil, I. Fischer, W. Elsäßer, J. Mulet, C. Mirasso, Phys. Rev. Lett. 86, 795 (2001)

    Article  ADS  Google Scholar 

  43. G. Van der Sande, M. Soriano, I. Fischer, C. Mirasso, Phys. Rev. E 77, 055202 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otti D’Huys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

D’Huys, O., Jüngling, T., Kinzel, W. (2016). On the Interplay of Noise and Delay in Coupled Oscillators. In: Schöll, E., Klapp, S., Hövel, P. (eds) Control of Self-Organizing Nonlinear Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-28028-8_7

Download citation

Publish with us

Policies and ethics