Skip to main content

Nonlinear and Multiplayer Evolutionary Games

  • Chapter
  • First Online:

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 14))

Abstract

Classical evolutionary game theory has typically considered populations within which randomly selected pairs of individuals play games against each other, and the resulting payoff functions are linear. These simple functions have led to a number of pleasing results for the dynamic theory, the static theory of evolutionarily stable strategies, and the relationship between them. We discuss such games, together with a basic introduction to evolutionary game theory, in Sect. 5.1. Realistic populations, however, will generally not have these nice properties, and the payoffs will be nonlinear. In Sect. 5.2 we discuss various ways in which nonlinearity can appear in evolutionary games, including pairwise games with strategy-dependent interaction rates, and playing the field games, where payoffs depend upon the entire population composition, and not on individual games. In Sect. 5.3 we consider multiplayer games, where payoffs are the result of interactions between groups of size greater than two, which again leads to nonlinearity, and a breakdown of some of the classical results of Sect. 5.1. Finally in Sect. 5.4 we summarise and discuss the previous sections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Axelrod R (1981) The emergences of cooperation among egoists. Am Polit Sci Rev 75:306–318

    Article  Google Scholar 

  • Ball M, Parker G (2007) Sperm competition games: the risk model can generate higher sperm allocation to virgin females. J Evol Biol 20(2):767–779

    Article  Google Scholar 

  • Bishop D, Cannings C (1976) Models of animal conflict. Adv Appl Probab 8:616–621

    Article  MATH  Google Scholar 

  • Bishop D, Cannings C (1978) A generalized war of attrition. J Theor Biol 70:85–124

    Article  MathSciNet  Google Scholar 

  • Broom M, Rychtář J (2012) A general framework for analyzing multiplayer games in networks using territorial interactions as a case study. J Theor Biol 302:70–80

    Article  MATH  Google Scholar 

  • Broom M, Rychtář J (2013) Game-theoretical models in biology. CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  • Broom M, Cannings C, Vickers G (1997) Multi-player matrix games. Bull Math Biol 59(5):931–952

    Article  MATH  Google Scholar 

  • Broom M, Cannings C, Vickers G (2000a) Evolution in knockout conflicts: the fixed strategy case. Bull Math Biol 62(3):451–466

    Google Scholar 

  • Broom M, Cannings M, Vickers G (2000b) Evolution in knockout contests: the variable strategy case. Selection 1(1):5–22

    Google Scholar 

  • Broom M, Luther R, Ruxton G (2004) Resistance is useless? - extensions to the game theory of kleptoparasitism. Bull Math Biol 66(6):1645–1658

    Article  MathSciNet  MATH  Google Scholar 

  • Broom M, Luther R, Ruxton G, Rychtář J (2008) A game-theoretic model of kleptoparasitic behavior in polymorphic populations. J Theor Biol 255(1):81–91

    Article  MathSciNet  Google Scholar 

  • Bukowski M, Miȩkisz J (2004) Evolutionary and asymptotic stability in symmetric multi-player games. Int J Game Theory 33(1):41–54

    Article  MathSciNet  MATH  Google Scholar 

  • Cannings C (1990) Topics in the theory of ESS’s. In: Lessard S (ed) Mathematical and statistical developments of evolutionary theory. Lecture notes in mathematics, pp 95–119. Kluwer Academic Publishers, Drodrecht

    Chapter  Google Scholar 

  • Cressman R, Křivan V, Garay J (2004) Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments. Am Nat 164(4):473–489

    Article  Google Scholar 

  • Cressman R, Křivan V, Brown J, Garay G (2014) Game-theoretic methods for functional response and optimal foraging behavior. PLoS One 9(2):e88773. doi:10.1371/journal.pone.0088773

    Article  Google Scholar 

  • Edwards A (2000) Foundations of mathematical genetics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Fisher R (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  MATH  Google Scholar 

  • Fogel GB, Andrews PC, Fogel DB (1998) On the instability of evolutionary stable strategies in small populations. Ecol Model 109(3):283–294

    Article  Google Scholar 

  • Ganzfried S, Sandholm TW (2009) Computing equilibria in multiplayer stochastic games of imperfect information. In: Proceedings of the 21st international joint conference on artificial intelligence (IJCAI)

    Google Scholar 

  • Geritz S, Kisdi E, Meszéna G, Metz J (1998) Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57

    Article  Google Scholar 

  • Gokhale C, Traulsen A (2010) Evolutionary games in the multiverse. Proc Natl Acad Sci 107(12):5500–5504

    Article  Google Scholar 

  • Gokhale CS, Traulsen A (2014) Evolutionary multiplayer games. Dyn Games Appl 4(4):468–488

    Article  MathSciNet  MATH  Google Scholar 

  • Haigh J, Cannings C (1989) The n-person war of attrition. Acta Applicandae Math 14(1):59–74

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton W (1967) Extraordinary sex ratios. Science 156:477–488

    Article  Google Scholar 

  • Han TA, Traulsen A, Gokhale CS (2012) On equilibrium properties of evolutionary multi-player games with random payoff matrices. Theor Popul Biol 81(4):264–272

    Article  Google Scholar 

  • Hauert C, Michor F, Nowak MA, Doebeli M (2006) Synergy and discounting of cooperation in social dilemmas. J Theor Biol 239(2):195–202

    Article  MathSciNet  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hofbauer J, Sigmund K (2003) Evolutionarily game dynamics. Bull Am Math Soc 40(4):479–519

    Article  MathSciNet  MATH  Google Scholar 

  • Kim Y (1996) Equilibrium selection in n-person coordination games. Games Econ Behav 15(2):203–227

    Article  MathSciNet  MATH  Google Scholar 

  • Kisdi É, Meszéna G (1993) Density dependent life history evolution in fluctuating environments. Lect Notes Biomath 98:26–62

    Article  MATH  Google Scholar 

  • Koch G, Sillett S, Jennings G, Davis S (2004) The limits to tree height. Nature 428(6985):851–854

    Article  Google Scholar 

  • Kokko H (2007) Modelling for field biologists and other interesting people. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Křivan V, Cressman R, Schneider C (2008) The ideal free distribution: a review and synthesis of the game-theoretic perspective. Theor Popul Biol 73(3):403–425

    Article  MATH  Google Scholar 

  • Lieberman E, Hauert C, Nowak M (2005) Evolutionary dynamics on graphs. Nature 433(7023):312–316

    Article  Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Maynard Smith J, Price G (1973) The logic of animal conflict. Nature 246:15–18

    Article  Google Scholar 

  • Metz J (2008) In: SE Jørgensen, Fath BD (eds) Fitness. Encyclopedia of ecology, Five-Volume Set, 1st Edition published by Elsevier, pp 1599–1612. http://store.elsevier.com/product.jsp?isbn=9780080454054

  • Metz J, Nisbet R, Geritz S (1992) How should we define fitness for general ecological scenarios? Trends Ecol Evol 7(6):198–202

    Article  Google Scholar 

  • Moran P (1962) The statistical processes of evolutionary theory. Clarendon Press/Oxford University Press, Oxford

    MATH  Google Scholar 

  • Nowak M (2006) Evolutionary dynamics, exploring the equations of life First Edition, Belknap Press 2006, ISBN-13: 978-0674023383

    Google Scholar 

  • Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428(6983):646–650

    Article  Google Scholar 

  • Palm G (1984) Evolutionary stable strategies and game dynamics for n-person games. J Math Biol 19(3):329–334

    Article  MathSciNet  MATH  Google Scholar 

  • Parker G (1978) Searching for mates. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, Oxford, pp 214–244

    Google Scholar 

  • Parker G, Ball M, Stockley P, Gage M (1997) Sperm competition games: a prospective analysis of risk assessment. Proc R Soc Lond Ser B Biol Sci 264(1389):1793–1802

    Article  Google Scholar 

  • Samuelson L (1997) Evolutionary games and equilibrium selection. MIT Press, Cambridge

    MATH  Google Scholar 

  • Taylor P, Jonker L (1978) Evolutionarily stable strategies and game dynamics. Math Biosci 40:145–156

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor C, Nowak M (2006) Evolutionary game dynamics with non-uniform interaction rates. Theor Popul Biol 69(3):243–252

    Article  MATH  Google Scholar 

  • Taylor C, Fudenberg D, Sasaki A, Nowak M (2004) Evolutionary game dynamics in finite populations. Bull Math Biol 66(6):1621–1644

    Article  MathSciNet  MATH  Google Scholar 

  • Traulsen A, Claussen JC, Hauert C (2005) Coevolutionary dynamics: from finite to infinite populations. Phys Rev Lett 95(23):238,701

    Google Scholar 

  • Tucker A (1980) On Jargon: the Prisoner’s dilemma. UMAP J 1:101

    Google Scholar 

  • Wooders M, Cartwright E, Selten R (2006) Behavioral conformity in games with many players. Games Econ Behav 57(2):347–360

    Article  MathSciNet  MATH  Google Scholar 

  • Zeeman E (1980) Population dynamics from game theory. In: Nitecki Z, Robinson C (eds) Global theory of dynamical systems. Lecture notes in mathematics, vol 819. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Broom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Broom, M., Rychtář, J. (2016). Nonlinear and Multiplayer Evolutionary Games. In: Thuijsman, F., Wagener, F. (eds) Advances in Dynamic and Evolutionary Games. Annals of the International Society of Dynamic Games, vol 14. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-28014-1_5

Download citation

Publish with us

Policies and ethics