Abramson, B., et al.: Hailfinder: a Bayesian system for forecasting severe weather. Int. J. Forecast. 12(1), 57–71 (1996)
CrossRef
Google Scholar
Aliferis, C.F., et al.: Local causal and Markov Blanket induction for causal discovery and feature selection for classification part i: algorithms and empirical evaluation. J. Mach. Learn. Res. 11, 171–234 (2010)
MATH
MathSciNet
Google Scholar
Aliferis, C.F., et al.: Local causal and Markov Blanket induction for causal discovery and feature selection for classification part II: analysis and extensions. J. Mach. Learn. Res. 11, 235–284 (2010)
MATH
MathSciNet
Google Scholar
Astle, W., Balding, D.J.: Population structure and cryptic relatedness in genetic association studies. Stat. Sci. 24(4), 451–471 (2009)
MathSciNet
CrossRef
Google Scholar
Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9, 485–516 (2008)
MATH
MathSciNet
Google Scholar
Baragona, R., Battaglia, F., Poli, I.: Evolutionary Statistical Procedures: An Evolutionary Computation Approach to Statistical Procedures Designs and Applications. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, Chichester (2000)
MATH
Google Scholar
Breitling, R., et al.: Rank Products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 573(1–3), 83–92 (2004)
CrossRef
Google Scholar
A. J. Butte et al. “Discovering Functional Relationships Between RNA Expression and Chemotherapeutic Susceptibility Using Relevance Networks”. In: PNAS 97 (2000), pp. 12182–12186. 9 Graphical Modelling in Systems Biology 165
Google Scholar
Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models. Springer, Heidelberg (2005)
MATH
Google Scholar
Castelo, R., Roverato, A.: A robust procedure for Gaussian graphical model search from microarray data with p larger than n. J. Mach. Learn. Res. 7, 2621–2650 (2006)
MATH
MathSciNet
Google Scholar
Castillo, E., Gutiérrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network Models. Springer, Heidelberg (1997)
CrossRef
Google Scholar
Cheng, J., Druzdel, M.J.: AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. J. Artif. Intell. Res. 13, 155–188 (2000)
MATH
Google Scholar
Chickering, D.M.: Learning Bayesian Networks is NP-Complete. In: Fisher, D., Lenz, H.J. (eds.) Learning from Data: Artificial Intelligence and Statistics V Part III. LNS, pp. 121–130. Springer-Verlag, Heidelberg (1996)
CrossRef
Google Scholar
Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42(2–3), 393–405 (1990)
MATH
CrossRef
Google Scholar
Cowell, R.G., et al.: Probabilistic Networks and Expert Systems. Springer, Heidelberg (2007)
MATH
Google Scholar
Cox, D.R., Wermuth, N.: Linear dependencies represented by chain graphs. Stat. Sci. 8(3), 204–218 (1993)
MATH
MathSciNet
CrossRef
Google Scholar
Fernando, R.L., Habier, D., Kizilkaya, K., Garrick, D.J.: Extension of the Bayesian alphabet for genomic selection. BMC Bioinform. 12(186), 1–12 (2011)
Google Scholar
Dempster, A.P.: Covariance selection. Biometrics 28, 157–175 (1972)
CrossRef
Google Scholar
Duggan, D.J., et al.: Expression profiling using cDNA microarrays. Nature Genetics 21, pp. 10–14 (1999). (Suppl. 1)
Google Scholar
Edwards, D.I.: Introduction to Graphical Modelling, 2nd edn. Springer, Heidelberg (2000)
MATH
CrossRef
Google Scholar
Falconer, D.S., Mackay, T.F.C.: Introduction to Quantitative Genetics, 4th edn. Longman, Harlow (1996)
Google Scholar
Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2008)
MATH
CrossRef
Google Scholar
Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004)
CrossRef
Google Scholar
Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Mach. Learn. 29(2–3), 131–163 (1997)
MATH
CrossRef
Google Scholar
Friedman, N., Goldszmidt, M., Wyner, A.: Data analysis with Bayesian networks: a bootstrap approach. In: Laskey, K.B., Prade, H. (eds.) Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI), pp. 206–215. Morgan Kaufmann, San Francisco (1999)
Google Scholar
Friedman, N., Koller, D.: Being Bayesian about Bayesian network structure: A Bayesian approach to structure discovery in Bayesian networks. Mach. Learn. 50(1–2), 95–126 (2003)
MATH
CrossRef
Google Scholar
Friedman, N., Linial, M., Nachman, I.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000)
CrossRef
Google Scholar
Friedman, N., Pe’er, D., Nachman, I.: “Learning Bayesian network structure from massive datasets: the “Sparse Candidate” algorithm”. In: Proceedings of 15th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 206–221. Morgan Kaufmann (1999)
Google Scholar
Friedman, N., et al.: Using Bayesian networks to analyze gene expression data. J. Comput. Biol. 7, 601–620 (2000)
CrossRef
Google Scholar
Geiger, D., Heckerman, D.: Learning Gaussian networks. Technical report Available as Technical Report MSR-TR-94-10. Redmond, Washington: Microsoft Research (1994)
Google Scholar
Hartemink, A.J.: Principled computational methods for the validation and discovery of genetic regulatory networks. PhD thesis. School of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2001)
Google Scholar
Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995). Available as Technical Report MSR-TR-94-09
MATH
Google Scholar
Huber, W., et al.: Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl. 1), S96–S104 (2002)
CrossRef
Google Scholar
Imoto, S., et al.: Bootstrap analysis of gene networks based on Bayesian networks and nonparametric regression. Genome Inform. 13, 369–370 (2002)
Google Scholar
Jonckheere, A.: A Distribution-Free k-Sample test against ordered alternatives. Biometrika 41, 133–145 (1954)
MATH
MathSciNet
CrossRef
Google Scholar
Kennet, R.S., Perruca, G., Salini, S.: In: Kennet, R.S., Salini, S. (eds.) Modern Analysis of Customer Surveys: with Applications Using R. Wiley, Chichester (2012). (Chap. 11)
Google Scholar
Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5, 549–573 (2004)
MATH
MathSciNet
Google Scholar
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)
Google Scholar
Koller, D., Sahami, M.: Toward optimal feature selection. In: Proceedings of the 13th International Conference on Machine Learning (ICML), pp. 284–292 (1996)
Google Scholar
Korb, K., Nicholson, A.: Bayesian Artificial Intelligence, 2nd edn. Chapman and Hall, Boca Raton (2010)
Google Scholar
Larranaga, P., et al.: Learning Bayesian Networks by Genetic Algorithms: ACase Study in the Prediction of Survival in Malignant Skin Melanoma. In: Keravnou, E., Garbay, C., Baud, R., Wyatt, J. (eds.) AIME 1997. LNCS(LNAI), pp. 261–272. Springer, Heidelberg (1997)
Google Scholar
Lauritzen, S.L., Wermuth, N.: Graphical models for associations between variables, some of which are qualitative and some quantitative. Ann. Stat. 17(1), 31–57 (1989)
MATH
MathSciNet
CrossRef
Google Scholar
Lehmann, E.L.: Elements of Large Sample Theory, 3rd edn. Springer, Heidelberg (2004)
Google Scholar
Lehmann, E.L.: Nonparametrics: Statistical Methods Based on Ranks. Springer, Heidelberg (2006)
Google Scholar
Lennon, G.G., Lehrach, H.: Hybridization analyses of arrayed cDNA libraries. Trends Genet. 10, 314–317 (1991)
CrossRef
Google Scholar
Li, H., Gui, J.: Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 7, 302–317 (2006)
MATH
CrossRef
Google Scholar
Lipshutz, R.J., et al.: High density synthetic oligonucleotide arrays. Nat. Genet. 21(Suppl. 1), 20–24 (1999)
CrossRef
Google Scholar
Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E.: Prediction of totalgenetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001)
Google Scholar
Morota, G., et al.: An assessment of linkage disequilibrium in Holstein Cattle Using a Bayesian Network. Journal of Animal Breeding and Genetics 129, 474–487 (2012)
Google Scholar
Mukherjee, S., Speed, T.P.: Network inference using informative priors. PNAS 105, 14313–14318 (2008)
CrossRef
Google Scholar
Musella, F.: Learning a Bayesian network from ordinal data. Working Paper 139. Dipartimento di Economia, Università degli Studi “Roma Tre” (2011)
Google Scholar
Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, New York (2003)
Google Scholar
Park, T., Casella, G.: The Bayesian lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)
MATH
MathSciNet
CrossRef
Google Scholar
Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)
CrossRef
Google Scholar
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)
Google Scholar
Pirie, W.: Jonckheere Tests for Ordered Alternatives. In: Encyclopaedia of Statistical Sciences, pp. 315–318. Wiley (1983)
Google Scholar
Sachs, K., et al.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)
CrossRef
Google Scholar
Schäfer, J., Strimmer, K.: A Shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4, 32 (2005)
MathSciNet
Google Scholar
Schäfer, J., Strimmer, K.: An Empirical bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754–764 (2005)
CrossRef
Google Scholar
Schuchhardt, J., et al.: Normalization strategies for cDNA microarrays. Nucleic Acids Res. 28, e47 (2000)
CrossRef
Google Scholar
Scutari, M., Brogini, A.: Bayesian network structure learning with permutation tests. Commun. Stat. Theory Methods 41(16–17), 3233–3243 (2012)
MATH
MathSciNet
CrossRef
Google Scholar
Scutari, M., Mackay, I., Balding, D.J.: Improving the efficiency of genomic selection. Stat. Appl. Genet. Mol. Biol. 12(4), 517–527 (2013)
MathSciNet
Google Scholar
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)
Google Scholar
Spirtes, P., et al.: Constructing Bayesian network models of gene expression networks from microarray data. In: Proceedings of the Atlantic Symposium on Computational Biology, Genome Information Systems and Technology (2001)
Google Scholar
Steck, H.: “Learning the Bayesian network structure: Dirichlet prior versus data.” In: Proceedings of the 24th Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2008), pp. 511–518 (2008)
Google Scholar
Steck, H., Jaakkola, T.: On the Dirichlet prior and Bayesian regularization. In: Advances in Neural Information Processing Systems (NIPS), pp. 697–704 (2002)
Google Scholar
Terpstra, T.J.: The asymptotic normality and consistency of Kendall’s test against trend when the ties are present in one ranking. indagationes mathematicae 14, 327–333 (1952)
MathSciNet
CrossRef
Google Scholar
Thomas, J.G., et al.: An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 11, 1227–1236 (2001)
CrossRef
Google Scholar
Tsamardinos, I., Aliferis, C.F., Statnikov, A.: “Algorithms for large scale Markov blanket discovery”. In: Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference, pp. 376–381 (2003)
Google Scholar
Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)
CrossRef
Google Scholar
Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley, New York (1990)
MATH
Google Scholar
Yeung, K.Y., et al.: Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10), 977–987 (2001)
CrossRef
Google Scholar