Early Playout Termination in MCTS

  • Richard Lorentz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9525)


Many researchers view mini-max and MCTS-based searches as competing and incompatible approaches. For example, it is generally agreed that chess and checkers require a mini-max approach while Go and Havannah require MCTS. However, a hybrid technique is possible that has features of both mini-max and MCTS. It works by stopping the random MCTS playouts early and using an evaluation function to determine the winner of the playout. We call this algorithm MCTS-EPT (MCTS with early playout termination) and study it using MCTS-EPT programs we have written for Amazons, Havannah, and Breakthrough.


  1. 1.
    Browne, C., Powley, D., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, C.: A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–49 (2012)CrossRefGoogle Scholar
  2. 2.
    Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search. In: 5th International Conference on Computers and Games, CG 2006, Turin, Italy, pp. 72–84 (2006)Google Scholar
  3. 3.
    Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Ghahramani, Z. (ed.) Proceedings of the 24th International Conference on Machine Learning (ICML 2007), pp. 273–280. ACM, New York (2007)Google Scholar
  4. 4.
    Chaslot, G.M.J.-B., Winands, M.H.M., van den Herik, H.J., Uiterwijk, J.W.H.M., Bouzy, B.: Progressive strategies for monte-carlo tree search. New Math. Nat. Comput. 4(3), 343–357 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kloetzer, J., Iida, H., Bouzy, B.: The monte-carlo approach in amazons. In: Computer Games Workshop, Amsterdam, The Netherlands, pp. 113–124 (2007)Google Scholar
  6. 6.
    Lorentz, R.J.: Amazons discover monte-carlo. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 13–24. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  7. 7.
    Lorentz, R., Horey, T.: Programming breakthrough. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 49–59. Springer, Heidelberg (2013) Google Scholar
  8. 8.
    Lorentz, R.: Experiments with monte-carlo tree search in the game of havannah. ICGA J. 34(3), 140–150 (2011)CrossRefGoogle Scholar
  9. 9.
    Winands, M.H.M., Björnsson, Y.: Evaluation function based monte-carlo LOA. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 33–44. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    Havannah#The Havannah Challenge.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceCalifornia State UniversityNorthridgeUSA

Personalised recommendations