Advances in Computer Games

Advances in Computer Games pp 177-184 | Cite as

Constructing Pin Endgame Databases for the Backgammon Variant Plakoto

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9525)

Abstract

Palamedes is an ongoing project for building expert playing bots that can play backgammon variants. Until recently the position evaluation relied only on self-trained neural networks. This paper describes the first attempt to augment Palamedes by constructing databases for certain endgame positions for the backgammon variant of Plakoto. The result is 5 databases containing 12,480,720 records in total; they can calculate accurately the best move for roughly 3.4 × 1015 positions. To the best of our knowledge, this is the first time that an endgame database is created for this game.

References

  1. 1.
    Benjamin, A., Ross, A.M.: Enumerating backgammon positions: the perfect hash. Interface: Undergraduate Res. Harvey Mudd Coll. 16(1), 3–10 (1996)Google Scholar
  2. 2.
    Bowling, M., Burch, N., Johanson, M., Tammelin, O.: Heads-up limit hold’em poker is solved. Science 347(6218), 145–149 (2015)CrossRefGoogle Scholar
  3. 3.
    Ciancarini, P., Favini, G.P.: Solving Kriegspiel endings with brute force: the case of KR vs. K. In: van den Herik, H., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 136–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Fang, H.-R., Hsu, T.-S., Hsu, S.-C.: Construction of Chinese chess endgame databases by retrograde analysis. In: Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063, pp. 96–114. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Gasser, R.: Solving nine men’s morris. Comput. Intell. 12(1), 24–41 (1996)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Nalimov, E.V., Haworth, G.M., Heinz, E.A.: Space-efficient indexing of chess endgame tables. ICGA J. 23(3), 148–162 (2000)Google Scholar
  7. 7.
    Papahristou, N., Refanidis, I.: On the design and training of bots to play backgammon variants. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) Artificial Intelligence Applications and Innovations. IFIP AICT, vol. 381, pp. 78–87. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Romein, J.W., Bal, H.E.: Solving awari with parallel retrograde analysis. Computer 36(10), 26–33 (2003)CrossRefGoogle Scholar
  9. 9.
    Ross, A.M., Benjamin, A.T., Munson, M.: Estimating winning probabilities in backgammon races. In: Ethier, S.N., Eadington, W.R. (eds.) Optimal Play: Mathematical Studies of Games and Gambling, pp. 269–291. Institute for the Study of Gambling and Commercial Gaming, University of Nevada, Reno (2007)Google Scholar
  10. 10.
    Schaeffer, J., Bjornsson, Y., Burch, N., Lake, R., Lu, P., Sutphen, S.: Building the checkers 10-piece endgame databases. In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games: Many Games, Many Challenges, pp. 193–210. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  11. 11.
    Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., Sutphen, S.: Checkers is solved. Science 317, 1518–1522 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Thompson, K.: Retrograde analysis of certain endgames. ICCA J. 9(3), 131–139 (1986)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of MacedoniaThessalonikiGreece

Personalised recommendations