Prospects for Bioprocess Development Based on Recent Genome Advances in Lignocellulose Degrading Basidiomycetes

Part of the Fungal Biology book series (FUNGBIO)


The unique degradative activities of wood decay fungi, together with the rapid increase in genome data, offer unparalleled opportunities for biotechnological exploitation. Enzymatic conversion of pretreated woody material to high value products is of particular interest for biofuels production. A diverse array of extracellular peroxidases have been identified and these have considerable promise for the oxidation of the recalcitrant cell wall polymer, lignin. These enzymes, together with an array of intracellular oxidoreductases, are also able to transform various xenobiotics. These ligninolytic fungi also feature large numbers of genes encoding structurally diverse hydrolases and these too have considerable potential for the conversion of cellulose and hemicellulose to high value products. Certain wood decay fungi, collectively referred to as brown rot fungi, do not appreciably remove lignin and employ small molecular weight oxidants to rapidly depolymerize cellulose in the absence of hydrolases. Although rapid and efficient, it remains to be seen whether such non-enzymatic processes could be effectively harnessed for conversion of ‘cellulosics’. A complete understanding of lignocellulose degradation has been hampered by limited experimental tools and by the enormous number of genes encoding proteins of unknown function. Based on transcriptome and proteome studies, many of these ‘hypothetical’ proteins likely play an important, but poorly understood, role in lignocellulose degradation, Addressing this longstanding problem, new approaches for genetic transformation offer opportunities to establish the function of genes. Together with a growing number of metagenome investigations, current and future research will surely identify novel and potentially useful enzymes for bioprocess development.


Lignin White rot Brown rot Lignocellulose Peroxidases 


  1. Akhtar M, Attridge MC, Myers GC, Kirk TK, Blanchette RA. Biomechanical pulping of loblolly pine with different strains of the white rot fungus Ceriporiopsis subvermispora. TAPPI. 1992;75:105–9.Google Scholar
  2. Amitai G, Adani R, Sod-Moriah G, Rabinovitz I, Vincze A, Leader H, et al. Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett. 1998;438(3):195–200.CrossRefGoogle Scholar
  3. Arantes V, Milagres AM, Filley TR, Goodell B. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol. 2011;38(4):541–55.CrossRefGoogle Scholar
  4. Arantes V, Jellison J, Goodell B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol. 2012;94(2):323–38.CrossRefGoogle Scholar
  5. Baldrian P, Lopez-Mondejar R. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Appl Microbiol Biotechnol. 2014;98(4):1531–7.CrossRefGoogle Scholar
  6. Baldrian P, Valaskova V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev. 2008;32(3):501–21.CrossRefGoogle Scholar
  7. Baldrian P, Kolarik M, Stursova M, Kopecky J, Valaskova V, Vetrovsky T, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012;6(2):248–58.CrossRefGoogle Scholar
  8. Behrendt CJ, Blanchette RA. Biological processing of pine logs for pulp and paper production with Phlebiopsis gigantea. Appl Environ Microbiol. 1997;63(5):1995–2000.Google Scholar
  9. Bezalel L, Hadar Y, Cerniglia CE. Mineralization of polycyclic aromatic hydrocarbons by the white Rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996a;62(1):292–5.Google Scholar
  10. Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996b;62(7):2547–53.Google Scholar
  11. Bezalel L, Hadar Y, Cerniglia CE. Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1997;63(7):2495–501.Google Scholar
  12. Blanchette R. Delignification by wood-decay fungi. Annu Rev Phytopathol. 1991;29:381–98.CrossRefGoogle Scholar
  13. Blanchette R, Krueger E, Haight J, Akhtar M, Akin D. Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. J Biotechnol. 1997;53:203–13.CrossRefGoogle Scholar
  14. Bogan B, Lamar R, Hammel K. Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol. 1996a;62:1788–92.Google Scholar
  15. Bogan B, Schoenike B, Lamar R, Cullen D. Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol. 1996b;62:3697–703.Google Scholar
  16. Bogan B, Schoenike B, Lamar R, Cullen D. Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol. 1996c;62:2381–6.Google Scholar
  17. Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol. 1997;63:4627–32.Google Scholar
  18. Bourbonnais R, Leech D, Paice MG. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim Biophys Acta. 1998;1379(3):381–90.CrossRefGoogle Scholar
  19. Boyle CD, Kropp BR, Reid ID. Solubilization and mineralization of lignin by white rot fungi. Appl Environ Microbiol. 1992;58(10):3217–24.Google Scholar
  20. Camarero S, Ibarra D, Martinez MJ, Martinez AT. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol. 2005;71(4):1775–84.CrossRefGoogle Scholar
  21. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233–8.CrossRefGoogle Scholar
  22. Choinowski T, Blodig W, Winterhalter KH, Piontek K. The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol. 1999;286(3):809–27.CrossRefGoogle Scholar
  23. Coconi-Linares N, Magana-Ortiz D, Guzman-Ortiz DA, Fernandez F, Loske AM, Gomez-Lim MA. High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl Microbiol Biotechnol. 2014;98(22):9283–94.CrossRefGoogle Scholar
  24. Cohen R, Jensen KA, Houtman CJ, Hammel KE. Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. FEBS Lett. 2002;531(3):483–8.CrossRefGoogle Scholar
  25. Cohen R, Suzuki MR, Hammel KE. Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol. 2004;70(1):324–31.CrossRefGoogle Scholar
  26. Collins PJ, O'Brien MM, Dobson AD. Cloning and characterization of a cDNA encoding a novel extracellular peroxidase from Trametes versicolor. Appl Environ Microbiol. 1999;65(3):1343–7.Google Scholar
  27. Cowling EB. Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. Technical bulletin No, 1258. Washington, DC: U.S. Department of Agriculture; 1961.Google Scholar
  28. Cruz-Morato C, Rodriguez-Rodriguez CE, Marco-Urrea E, Sarra M, Caminal G, Vincent T, et al. Biodegradation of pharmaceuticals by fungi and metabolites identification. In: Vincent T, editor. Emerging organic contaminants in sludges: analysis, fate and biological treatment. Berlin: Springer-Verlag; 2012. p. 1–49.Google Scholar
  29. Cullen D. Molecular genetics of lignin-degrading fungi and their application in organopollutant degradation. In: Kempken F, editor. The Mycota, vol. XI. Berlin: Springer; 2002. p. 71–90.Google Scholar
  30. Cullen D. Wood decay. In: Martin F, editor. Ecological genomics of fungi. New York: Wiley-Blackwell; 2013. p. 41–62.CrossRefGoogle Scholar
  31. Cullen D, Kersten PJ. Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzulf GA, editors. The Mycota III biochemistry and molecular biology. Berlin: Springer; 2004. p. 249–73.CrossRefGoogle Scholar
  32. Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J, Fraissinet-Tachet L, et al. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One. 2012;7(1), e28967.CrossRefGoogle Scholar
  33. Daniel G. Use of electron microscopy for aiding our understanding of wood biodegradation. FEMS Microbiol Rev. 1994;13:199–233.CrossRefGoogle Scholar
  34. Daniel G, Volc J, Filonova L, Plihal O, Kubatova E, Halada P. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol. 2007;73(19):6241–53.CrossRefGoogle Scholar
  35. de Jong JF, Ohm RA, de Bekker C, Wosten HA, Lugones LG. Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett. 2010;310(1):91–5.CrossRefGoogle Scholar
  36. de Koker TH, Mozuch MD, Cullen D, Gaskell J, Kersten PJ. Pyranose 2-oxidase from Phanerochaete chrysosporium: isolation from solid substrate, protein purification, and characterization of gene structure and regulation. Appl Environ Microbiol. 2004;70:5794–800.CrossRefGoogle Scholar
  37. de Menezes A, Clipson N, Doyle E. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol. 2012;14(9):2577–88.CrossRefGoogle Scholar
  38. Doddapaneni H, Subramanian V, Fu B, Cullen D. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus. Fungal Genet Biol. 2013;55:22–31.CrossRefGoogle Scholar
  39. Doyle WA, Smith AT. Expression of lignin peroxidase H8 in Escherichia coli: folding and activation of the recombinant enzyme with Ca2+ and haem. Biochem J. 1996;315(Pt 1):15–9.CrossRefGoogle Scholar
  40. Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry. 1998;37(43):15097–105.CrossRefGoogle Scholar
  41. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, et al. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science. 2011;333(6043):762–5.CrossRefGoogle Scholar
  42. Eriksson K-EL, Blanchette RA, Ander P. Microbial and enzymatic degradation of wood and wood components. Timell TE, editor. Berlin: Springer; 1990.CrossRefGoogle Scholar
  43. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336(6089):1715–9.CrossRefGoogle Scholar
  44. Flournoy D, Paul J, Kirk TK, Highley T. Changes in the size and volume of pore in sweet gum wood during simultaneous rot by Phanerochaete chrysosporium. Holzforschung. 1993;47:297–301.CrossRefGoogle Scholar
  45. Ford CI, Walter M, Northcott GL, Di HJ, Cameron KC, Trower T. Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal by New Zealand trametes species in contaminated field soils. J Environ Qual. 2007a;36(6):1749–59.CrossRefGoogle Scholar
  46. Ford CI, Walter M, Northcott GL, Di HJ, Cameron KC, Trower T. Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal in highly contaminated field soils. J Environ Qual. 2007b;36(6):1599–608.CrossRefGoogle Scholar
  47. Garcia-Ruiz E, Gonzalez-Perez D, Ruiz-Duenas FJ, Martinez AT, Alcalde M. Directed evolution of a temperature-, peroxide- and alkaline pH-tolerant versatile peroxidase. Biochem J. 2012;441(1):487–98.CrossRefGoogle Scholar
  48. Gaskell J, Marty A, Mozuch M, Kersten PJ, Splinter BonDurant S, Sabat G, et al. Influence of populus genotype on gene expression by the wood decay fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 2014;80(18):5828–35.CrossRefGoogle Scholar
  49. George EJ, Neufield RD. Degradation of fluorene in soil by fungus Phanerochaete chrysosporium. Biotechnol Bioeng. 1989;33:1306–10.CrossRefGoogle Scholar
  50. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story. Cell Mol Life Sci. 2010;67(3):369–85.CrossRefGoogle Scholar
  51. Giffhorn F. Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry. Appl Microbiol Biotechnol. 2000;54(6):727–40.CrossRefGoogle Scholar
  52. Gilbertson RL. North American wood-rotting fungi that cause brown rots. Mycotoaxon. 1981;12:372–416.Google Scholar
  53. Golan-Rozen N, Chefetz B, Ben-Ari J, Geva J, Hadar Y. Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: role of cytochrome P450 monooxygenase and manganese peroxidase. Environ Sci Technol. 2011;45(16):6800–5.CrossRefGoogle Scholar
  54. Goodell B. Brown rot fungal degradation of wood: our evolving view. In: Goodell B, Nicholas D, Schultz T, editors. Wood deterioration and preservation. Washington, DC: American Chemical Society; 2003. p. 97–118.CrossRefGoogle Scholar
  55. Grinhut T, Hertkorn N, Schmitt-Kopplin P, Hadar Y, Chen Y. Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry. Environ Sci Technol. 2011a;45(7):2748–54.CrossRefGoogle Scholar
  56. Grinhut T, Salame TM, Chen Y, Hadar Y. Involvement of ligninolytic enzymes and Fenton-like reaction in humic acid degradation by Trametes sp. Appl Microbiol Biotechnol. 2011b;91(4):1131–40.CrossRefGoogle Scholar
  57. Gutierrez A, Babot ED, Ullrich R, Hofrichter M, Martinez AT, del Rio JC. Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase. Arch Biochem Biophys. 2011;514(1-2):33–43.CrossRefGoogle Scholar
  58. Hadar Y, Cullen D. Organopollutant degradation by wood decay basidiomycetes. In: Kempken F, editor. The Mycota, agricultural applications 11. 2nd ed. Berlin: Springer-Verlag; 2013. p. 115–44.CrossRefGoogle Scholar
  59. Hallberg BM, Bergfors T, Backbro K, Pettersson G, Henriksson G, Divne C. A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Struct Fold Des. 2000;8(1):79–88.CrossRefGoogle Scholar
  60. Hammel KE. Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect. 1995a;103 Suppl 5:41–3.CrossRefGoogle Scholar
  61. Hammel KE. Organopollutant degradation by fungi. In: Young LY, Cerniglia CE, editors. Microbial transformation and degradation of toxic organic chemical. New York: Wiley-Liss; 1995b. p. 331–46.Google Scholar
  62. Hammel KE, Cullen D. Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol. 2008;11(3):349–55.CrossRefGoogle Scholar
  63. Hammel KE, Tardone PJ. The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry. 1988;27:6563–8.CrossRefGoogle Scholar
  64. Hammel KE, Kalyanaraman B, Kirk TK. Oxidation of polycyclic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986;261:16948–52.Google Scholar
  65. Hammel KE, Gai WZ, Green B, Moen MA. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992;58(6):1832–8.Google Scholar
  66. Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 2010;49(15):3305–16.CrossRefGoogle Scholar
  67. Hatakka A. Biodegradation of lignin. In: Hofrichter M, Steinbuchel A, editors. Lignin, humic substances and coal, vol. 1. Weingeim: Wiley-VCH; 2001. p. 129–80.Google Scholar
  68. Hatakka A, Hammel KE. Fungal biodegradation of lignocelluloses. In: Hofrichter M, editor. Industrial applications, vol. 10. 2nd ed. Berlin: Springer; 2010.Google Scholar
  69. Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U. Purification and characterization of peroxidases from the dye- decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett. 1998;165(1):43–50.CrossRefGoogle Scholar
  70. Henriksson G, Johansson G, Pettersson G. A critical review of cellobiose dehydrogenases. J Biotechnol. 2000;78(2):93–113.CrossRefGoogle Scholar
  71. Hernandez-Ortega A, Ferreira P, Martinez AT. Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol. 2012;93(4):1395–410.CrossRefGoogle Scholar
  72. Hettich RL, Sharma R, Chourey K, Giannone RJ. Microbial metaproteomics: identifying the repertoire of proteins that microorganisms use to compete and cooperate in complex environmental communities. Curr Opin Microbiol. 2012;15(3):373–80.CrossRefGoogle Scholar
  73. Higson FK. Degradation of xenobiotics by white rot fungi. Rev Environ Contam Toxicol. 1991;122:111–52.Google Scholar
  74. Higuchi T. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol. 1990;24(1):23–63.CrossRefGoogle Scholar
  75. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol. 2010;87(3):871–97.CrossRefGoogle Scholar
  76. Holzbaur E, Tien M. Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1988;155:626–33.CrossRefGoogle Scholar
  77. Hori C, Igarashi K, Katayama A, Samejima M. Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett. 2011;321(1):14–23.CrossRefGoogle Scholar
  78. Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, et al. Genome-wide analysis of polysaccharide degrading enzymes in eleven white- and brown-rot polyporales provides insight into mechanisms of wood decay. Mycologia. 2013;105:1412–27.CrossRefGoogle Scholar
  79. Hori C, Gaskell J, Igarashi K, Kersten P, Mozuch M, Samejima M, et al. Temporal alterations in secretome of selective ligninolytic fungi Ceriporiopsis subvermispora during growth on aspen wood reveal its strategy of degrading lignocellulose. Appl Environ Microbiol. 2014a;80(7):2062–70.CrossRefGoogle Scholar
  80. Hori C, Ishida T, Igarashi K, Samejima M, Suzuki H, Master E, et al. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood. PLoS Genet. 2014b;10(12), e1004759.CrossRefGoogle Scholar
  81. Ichinose H, Wariishi H, Tanaka H. Bioconversion of recalcitrant 4-methyldibenzothiophene to water- extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol Prog. 1999;15(4):706–14.CrossRefGoogle Scholar
  82. Johannes C, Majcherczyk A, Huttermann A. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol. 1996;46(3):313–7.CrossRefGoogle Scholar
  83. Kapich AN, Jensen KA, Hammel KE. Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett. 1999;461(1-2):115–9.CrossRefGoogle Scholar
  84. Kaushik P, Malik A. Fungal dye decolourization: recent advances and future potential. Environ Int. 2009;35(1):127–41.CrossRefGoogle Scholar
  85. Kersten PJ. Glyoxal oxidase of Phanerochaete 1chrysosporium: Its characterization and activation by lignin peroxidase. Proc Natl Acad Sci U S A. 1990;87(8):2936–40.CrossRefGoogle Scholar
  86. Kersten P, Cullen D. Recent advances on the genomics of litter- and soil-inhabiting Agaricomycetes. In: Mukherjee PK, Mukherjee M, Kubicek CP, Horwitz BA, editors. Genomics of soil- and plant-associated fungi. soil biology. Berlin: Springer; 2013. p. 311–32.CrossRefGoogle Scholar
  87. Kersten PJ, Kirk TK. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987;169:2195–201.Google Scholar
  88. Kersten PJ, Tien M, Kalyanaraman B, Kirk TK. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem. 1985;260:2609–12.Google Scholar
  89. Kirk TK, Cullen D. Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M, editors. Environmentally friendly technologies for the pulp and paper industry. New York: John Wiley and Sons; 1998. p. 273–308.Google Scholar
  90. Kirk TK, Farrell RL. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505.CrossRefGoogle Scholar
  91. Kirk TK, Tien M, Kersten PJ, Mozuch MD, Kalyanaraman B. Ligninase of Phanerochaete chrysoporium. Mechanism of its degradation of the non-phenolic arylglycerol b-aryl ether substructure of lignin. Biochem J. 1986;236:279–87.CrossRefGoogle Scholar
  92. Kirk TK, Ibach R, Mozuch MD, Conner AH, Highley TL. Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung. 1991;45:239–44.CrossRefGoogle Scholar
  93. Kleman-Leyer K, Agosin E, Conner AH, Kirk TK. Changes in molecular size distribution of cellulose during attack by white rot and brown Rot fungi. Appl Environ Microbiol. 1992;58(4):1266–70.Google Scholar
  94. Kluczek-Turpeinen B, Steffen KT, Tuomela M, Hatakka A, Hofrichter M. Modification of humic acids by the compost-dwelling deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol. 2005;66(4):443–9.CrossRefGoogle Scholar
  95. Knop D, Ben-Ari J, Salame TM, Levinson D, Yarden O, Hadar Y. Mn(2)(+)-deficiency reveals a key role for the Pleurotus ostreatus versatile peroxidase (VP4) in oxidation of aromatic compounds. Appl Microbiol Biotechnol. 2014;98(15):6795–804.CrossRefGoogle Scholar
  96. Kuan IC, Tien M. Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci U S A. 1993;90(4):1242–6.CrossRefGoogle Scholar
  97. Kullman SW, Matsumura F. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol. 1996;62:593–600.Google Scholar
  98. Lamar R, Dietrich D. In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Appl Environ Microbiol. 1990;56:3093–100.Google Scholar
  99. Lamar RT, Glaser JA, Kirk TK. Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium; mineralization, volatilization and depletion of PCP. Soil Biol Biochem. 1990a;22(4):433–40.CrossRefGoogle Scholar
  100. Lamar RT, Larsen MJ, Kirk TK. Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl Environ Microbiol. 1990b;56(11):3519–26.Google Scholar
  101. Lamar RT, Davis MW, Dietrich D, Glaser JA. Treatment of a pentachlorophenol- and creosote-contaminated soil using the lignin-degrading fungus Phanerochaete chrysosporium: a field demonstration. Soil Biol Biochem. 1994;26:1603–11.CrossRefGoogle Scholar
  102. Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol. 2011;77(19):7007–15.CrossRefGoogle Scholar
  103. Lestan D, Lamar RT. Development of fungal inocula for bioaugmentation of contaminated soils. Appl Environ Microbiol. 1996;62(6):2045–52.Google Scholar
  104. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6(1):41.CrossRefGoogle Scholar
  105. Lundell TK, Makela MR, Hilden K. Lignin-modifying enzymes in filamentous basdiomycetes-ecological, functional and phylogenetic review. J Basic Microbiol. 2010;50:4–20.CrossRefGoogle Scholar
  106. Macdonald J, Master ER. Time-dependent profiles of transcripts encoding lignocellulose-modifying enzymes of the white rot fungus Phanerochaete carnosa grown on multiple wood substrates. Appl Environ Microbiol. 2012;78(5):1596–600.CrossRefGoogle Scholar
  107. MacDonald J, Suzuki H, Master ER. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol. 2012;94(2):339–51.CrossRefGoogle Scholar
  108. Magana-Ortiz D, Coconi-Linares N, Ortiz-Vazquez E, Fernandez F, Loske AM, Gomez-Lim MA. A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol. 2013;56:9–16.CrossRefGoogle Scholar
  109. Manavalan A, Adav SS, Sze SK. iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium. J Proteomics. 2011;75(2):642–54.CrossRefGoogle Scholar
  110. Marco-Urrea E, Perez-Trujillo M, Vicent T, Caminal G. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere. 2009;74(6):765–72.CrossRefGoogle Scholar
  111. Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452(7183):88–92.CrossRefGoogle Scholar
  112. Martinez D, Larrondo LF, Putnam N, Sollewijn Gelpke MD, Huang K, Chapman J, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol. 2004;22:695–700.CrossRefGoogle Scholar
  113. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. 2008;26(5):553–60.CrossRefGoogle Scholar
  114. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A. 2009;106(6):1954–9.CrossRefGoogle Scholar
  115. Martinez AT, Ruiz-Duenas FJ, Gutierrez A, del Rio JC, Alcalde M, Liers C, et al. Search, engineering and applications of new oxidative biocatalysts. Biofuels Bioprod Bioref. 2014;8:819–35.CrossRefGoogle Scholar
  116. Masapahy S, Lamb DC, Kelly SL. Purification and characterization of a benzo[a]pyrene hydroxylase from Pleurotus pulmonarius. Biochem Biophys Res Commun. 1999;266(2):326–9.CrossRefGoogle Scholar
  117. Mate D, Garcia-Burgos C, Garcia-Ruiz E, Ballesteros AO, Camarero S, Alcalde M. Laboratory evolution of high-redox potential laccases. Chem Biol. 2010;17(9):1030–41.CrossRefGoogle Scholar
  118. Matityahu A, Hadar Y, Dosoretz CG, Belinky PA. Gene silencing by RNA Interference in the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 2008;74(17):5359–65.CrossRefGoogle Scholar
  119. Miele A, Giardina P, Sannia G, Faraco V. Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation. J Appl Microbiol. 2010;108(3):998–1006.CrossRefGoogle Scholar
  120. Miki K, Renganathan V, Gold MH. Mechanism of beta-aryl ether dimeric lignin model compound oxidation by lignin peroxidase by Phanerochaete chrysosporium. Biochemistry. 1986;25(17):4790–6.CrossRefGoogle Scholar
  121. Mileski GJ, Bumpus JA, Jurek MA, Aust SD. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1988;54(12):2885–9.Google Scholar
  122. Moen M, Hammel K. Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol. 1994;60:1956–61.Google Scholar
  123. Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG, et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A. 2012;109(43):17501–6.CrossRefGoogle Scholar
  124. Mueller RS, Pan C. Sample handling and mass spectrometry for microbial metaproteomic analyses. Methods Enzymol. 2013;531:289–303.CrossRefGoogle Scholar
  125. Munoz IG, Ubhayasekera W, Henriksson H, Szabo I, Pettersson G, Johansson G, et al. Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 A resolution and homology models of the isozymes. J Mol Biol. 2001;314(5):1097–111.CrossRefGoogle Scholar
  126. Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T. Efficient gene targeting in DeltaCc.ku70 or DeltaCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol. 2011;48(10):939–46.CrossRefGoogle Scholar
  127. Nie G, Reading NS, Aust SD. Expression of the lignin peroxidase H2 gene from Phanerochaete chrysosporium in Escherichia coli. Biochem Biophys Res Commun. 1998;249(1):146–50.CrossRefGoogle Scholar
  128. Niemenmaa O, Uusi-Rauva A, Hatakka A. Demethoxylation of [O(14)CH (3)]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation. 2007;19:555–65.CrossRefGoogle Scholar
  129. Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, et al. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28(9):957–63.CrossRefGoogle Scholar
  130. Paszczynski A, Crawford R, Funk D, Goodell B. De novo synthesis of 4,5-dimethoxycatechol and 2, 5- dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Microbiol. 1999;65(2):674–9.Google Scholar
  131. Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol. 1999;65(9):3805–9.Google Scholar
  132. Pointing SB. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol. 2001;57(1-2):20–33.CrossRefGoogle Scholar
  133. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A. 2011;108(37):15079–84.CrossRefGoogle Scholar
  134. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz F, et al. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev. 2004;3:29–60.CrossRefGoogle Scholar
  135. Ravalason H, Jan G, Molle D, Pasco M, Coutinho PM, Lapierre C, et al. Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol. 2008;80(4):719–33.CrossRefGoogle Scholar
  136. Reddy GV, Gold MH. A two-component tetrachlorohydroquinone reductive dehalogenase system from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1999;257(3):901–5.CrossRefGoogle Scholar
  137. Reddy GV, Gold MH. Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology. 2000;146(Pt 2):405–13.CrossRefGoogle Scholar
  138. Reddy GV, Gelpke MD, Gold MH. Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. J Bacteriol. 1998;180(19):5159–64.Google Scholar
  139. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A. 2014;111(27):9923–8.CrossRefGoogle Scholar
  140. Ruiz-Duenas FJ, Morales M, Mate MJ, Romero A, Martinez MJ, Smith AT, et al. Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. Biochemistry. 2008;47(6):1685–95.CrossRefGoogle Scholar
  141. Ruiz-Dueñas FJ, Pogni R, Morales M, Giansanti S, Mate MJ, Romero A, et al. Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both comound I and compound II and studies on W164Y, W164H and W164S variants. J Biol Chem. 2009;284(12):7986–94.CrossRefGoogle Scholar
  142. Ruttimann-Johnson C, Lamar RT. Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Appl Environ Microbiol. 1996;62(10):3890–3.Google Scholar
  143. Salame TM, Yarden O, Hadar Y. Pleurotus ostreatus manganese-dependent peroxidase silencing impairs decolourization of Orange II. Microb Biotechnol. 2010;3(1):93–106.CrossRefGoogle Scholar
  144. Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O, Hadar Y. Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation. PLoS One. 2012a;7(12), e52446.CrossRefGoogle Scholar
  145. Salame TM, Knop D, Tal D, Levinson D, Yarden O, Hadar Y. A gene-targeting system for Pleurotus ostreatus: demonstrating the predominance of versatile-peroxidase (mnp4) by gene replacement. Appl Environ Microbiol. 2012b;78:5341–852.CrossRefGoogle Scholar
  146. Salame TM, Knop D, Levinson D, Yarden O, Hadar Y. Redundancy among manganese peroxidases in Pleurotus ostreatus. Appl Environ Microbiol. 2013;79(7):2405–15.CrossRefGoogle Scholar
  147. Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O, Hadar Y. Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation. Environ Microbiol. 2014;16(1):265–77.CrossRefGoogle Scholar
  148. Sato S, Liu F, Koc H, Tien M. Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology. 2007;153(Pt 9):3023–33.CrossRefGoogle Scholar
  149. Scheibner K, Hofrichter M. Conversion of aminonitrotoluenes by fungal manganese peroxidase. J Basic Microbiol. 1998;38(1):51–9.CrossRefGoogle Scholar
  150. Schmidt O, Liese W. Variability of wood degrading enzymes of Schizophyllum commune. Holzforschung. 1980;34:67–72.CrossRefGoogle Scholar
  151. Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 2012;6(9):1749–62.CrossRefGoogle Scholar
  152. Schwartz TJ, Goodman SM, Osmundsen CM, Taarning E, Mozuch MD, Gaskell J, et al. Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catal. 2013;3:2689–93.CrossRefGoogle Scholar
  153. Schwarze FW. Wood decay under the microscope. Fungal Biol Rev. 2007;21:133–70.CrossRefGoogle Scholar
  154. Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Crit Rev Environ Sci Technol. 2011;41:807–78.CrossRefGoogle Scholar
  155. Snajdr J, Steffen KT, Hofrichter M, Baldrian P. Transformation of 14C-lableled lignin and humic substances in forest soil by the saprobic basidiomycetes Gymnopus erythropus and Hypholoma fasciculare. Soil Biol Biochem. 2010;42:1541–8.CrossRefGoogle Scholar
  156. Srebotnik E, Messner KE. Immunoelectron microscopical study of the porosity of brown rot wood. Holzforschung. 1991;45:95–101.CrossRefGoogle Scholar
  157. Srebotnik E, Messner K. A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol. 1994;60:1383–6.Google Scholar
  158. Srebotnik E, Messner K, Foisner R, Petterson B. Ultrastructural localization of ligninase of Phanerochaete chrysosporium by immunogold labeling. Curr Microbiol. 1988;16:221–7.CrossRefGoogle Scholar
  159. Steffen KT, Hatakka A, Hofrichter M. Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol. 2002;68(7):3442–8.CrossRefGoogle Scholar
  160. Stewart P, Cullen D. Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bact. 1999;181:3427–32.Google Scholar
  161. Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol. 2001;56(1-2):69–80.CrossRefGoogle Scholar
  162. Stursova M, Zifcakova L, Leigh MB, Burgess R, Baldrian P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol. 2012;80(3):735–46.CrossRefGoogle Scholar
  163. Suetomi T, Sakamoto T, Tokunaga Y, Kameyama T, Honda Y, Kamitsuji H, et al. Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus. Curr Genet. 2015;61(2):127–40.CrossRefGoogle Scholar
  164. Sundaramoorthy M, Kishi K, Gold M, Poulas T. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06Å resolution. J Biol Chem. 1994;269:32759–67.Google Scholar
  165. Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD, Hammel KE. Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol. 2006;8(12):2214–23.CrossRefGoogle Scholar
  166. Suzuki H, MacDonald J, Syed K, Salamov A, Hori C, Aerts A, et al. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics. 2012;13:444.CrossRefGoogle Scholar
  167. Syed K, Yadav JS. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit Rev Microbiol. 2012;38:339–63.CrossRefGoogle Scholar
  168. Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS. Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun. 2010;399(4):492–7.CrossRefGoogle Scholar
  169. Syed K, Kattamuri C, Thompson TB, Yadav JS. Cytochrome b(5) reductase-cytochrome b(5) as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2. Arch Biochem Biophys. 2011;509(1):26–32.CrossRefGoogle Scholar
  170. Syed K, Porollo A, Miller D, Yadav JS. Rational engineering of the fungal P450 monooxygenase CYP5136A3 to improve its oxidizing activity toward polycyclic aromatic hydrocarbons. Protein Eng Des Sel. 2013;26(9):553–7.CrossRefGoogle Scholar
  171. Teunissen PJ, Sheng D, Reddy GV, Moenne-Loccoz P, Field JA, Gold MH. 2-Chloro-1,4-dimethoxybenzene cation radical: formation and role in the lignin peroxidase oxidation of anisyl alcohol. Arch Biochem Biophys. 1998;360(2):233–8.CrossRefGoogle Scholar
  172. Tien M, Kirk TK. Lignin-degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science. 1983;221:661–3.CrossRefGoogle Scholar
  173. Ullrich R, Hofrichter M. The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett. 2005;579(27):6247–50.CrossRefGoogle Scholar
  174. Valli K, Gold MH. Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J Bacteriol. 1991;173(1):345–52.Google Scholar
  175. Valli K, Brock J, Joshi D, Gold M. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992a;58:221–8.Google Scholar
  176. Valli K, Wariichi H, Gold M. Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol. 1992b;174:2131–7.Google Scholar
  177. Van Aken B, Hofrichter M, Scheibner K, Hatakka AI, Naveau H, Agathos SN. Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation. 1999;10(2):83–91.CrossRefGoogle Scholar
  178. van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011;91:1477–92.CrossRefGoogle Scholar
  179. Vanden Wymelenberg A, Sabat G, Martinez D, Rajangam AS, Teeri TT, Gaskell J, et al. The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol. 2005;118(1):17–34.CrossRefGoogle Scholar
  180. Vanden Wymelenberg A, Sabat G, Mozuch MD, Kersten P, Cullen D, Blanchette RA. Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 2006;72:4871–7.CrossRefGoogle Scholar
  181. Vanden Wymelenberg A, Gaskell J, Mozuch MD, Kersten P, Sabat G, Martinez D, et al. Transcriptome and secretome analysis of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol. 2009;75:4058–68.CrossRefGoogle Scholar
  182. Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, et al. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol. 2010;76(11):3599–610.CrossRefGoogle Scholar
  183. Vanden Wymelenberg A, Gaskell J, Mozuch M, BonDurant SS, Sabat G, Ralph J, et al. Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species. Appl Environ Microbiol. 2011;77(13):4499–507.CrossRefGoogle Scholar
  184. Vazquez-Duhalt R, Westlake DWS, Fedorak PM. Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Envrion Microbiol. 1994;60:459–66.Google Scholar
  185. Wariishi H, Valli K, Gold MH. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem. 1992;267(33):23688–95.Google Scholar
  186. Wesenberg D, Kyriakides I, Agathos SN. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv. 2003;22(1-2):161–87.CrossRefGoogle Scholar
  187. Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, et al. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One. 2011;6(11), e27807.CrossRefGoogle Scholar
  188. Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, Whittaker JW. Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem. 1996;271(2):681–7.CrossRefGoogle Scholar
  189. Worrall JJ, Anagnost SE, Zabel RA. Comparison of wood decay among diverse lignicolous fungi. Mycologia. 1997;89:199–219.CrossRefGoogle Scholar
  190. Xu G, Goodell B. Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol. 2001;87(1):43–57.CrossRefGoogle Scholar
  191. Yelle DJ, Ralph J, Lu F, Hammel KE. Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol. 2008;10(7):1844–9.CrossRefGoogle Scholar
  192. Yelle DJ, Wei D, Ralph J, Hammel KE. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol. 2011;13(4):1091–100.CrossRefGoogle Scholar
  193. Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, et al. Cellobiose dehydrogenase—a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci. 2006;7(3):255–80.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Riken Biomass Engineering GroupYokohamaJapan
  2. 2.USDA Forest Products LaboratoryMadisonUSA

Personalised recommendations