Skip to main content

Modelling Non-stationary and Non-separable Spatio-Temporal Changes in Neurodegeneration via Gaussian Process Convolution

  • Conference paper
  • First Online:
Book cover Machine Learning Meets Medical Imaging (MLMMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9487))

Included in the following conference series:

Abstract

Modelling longitudinal changes in organs is fundamental for the understanding of biological and pathological processes. Most of the previous works on spatio-temporal modelling of image time series relies on the assumption of stationarity of the local spatial correlation, and on the separability between spatial and temporal processes. These assumptions are often made in order to lead to computationally tractable approaches to longitudinal modelling, but inevitably lead to an oversimplification of the complex spatial and temporal dynamics underlying the biological processes. In this work we propose a novel spatio-temporal generative model of time series of images based on kernel convolutions of a white noise Gaussian process. The proposed model is parameterised by a sparse set of control points independently identified by specific spatial and temporal parameters. This formulation is highly flexible and can naturally account for spatially and temporally varying dynamics of changes. We demonstrate a preliminary application of our non-parametric method on the modelling of within-subject structural changes in the context of longitudinal analysis in Alzheimer’s disease. In particular we show that our method provides an accurate description of the pathological evolution of the brain, while showing high flexibility in modelling and predicting region-specific non-linearity due to accelerated structural decline in dementia.

S. Ourselin—Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.C.: Population shape regression from random design data. Int. J. Comput. Vis. 90(2), 255–266 (2010)

    Article  Google Scholar 

  2. Ashburner, J., Ridgway, G.: Symmetric diffeomorphic modeling of longitudinal structural MRI. Front. Neurosci. 6(197) (2013)

    Google Scholar 

  3. Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X.: Mapping the effects of A\(\beta \) 1–42 levels on the longitudinal changes in healthy aging: hierarchical modeling based on stationary velocity fields. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 663–670. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Friston, K.J., Holmes, A., Worsley, K.J.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995)

    Article  Google Scholar 

  6. Ziegler, G., Ridgway, G.R., Dahnke, R., Gaser, C.: Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects. NeuroImage 97, 333–348 (2014)

    Article  Google Scholar 

  7. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  8. Lorenzi, M., Ziegler, G., Alexander, D.C., Ourselin, S.: Efficient Gaussian process-based modelling and prediction of image time series. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 626–637. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  9. Higdon, D.: Space and space-time modeling using process convolutions. In: Anderson, C.W., Barnett, V., Chatwin, P.C., El-Shaarawi, A.H. (eds.) Quantitative Methods for Current Environmental Issues, pp. 37–56. Springer, London (2002)

    Chapter  Google Scholar 

  10. Ashburner, J., Friston, K.: Unified segmentation. NeuroImage 26, 839–851 (2005)

    Article  Google Scholar 

  11. DiMatteo, I., Genovese, C.: Bayesian curve-fitting with free-knot splines. Biometrika 88, 1055–1071 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Paciorek, C., Schervish, M.: Nonstationary covariance functions for Gaussian process regression. Adv. Neural Inf. Proc. Sys. 16, 273–280 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzi Marco .

Editor information

Editors and Affiliations

Appendix

Appendix

We explicit here the derivatives of the log-marginal likelihood (5) with respect to the model parameters \(\varvec{\theta }\):

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}\varvec{\theta }}\log \mathcal {L} =&-\frac{1}{2} Tr\left( \varSigma (\varvec{\theta })^{-1} \frac{\mathrm {d} \varSigma (\varvec{\theta })}{\mathrm {d}\varvec{\theta }} \right) - y^T \varSigma (\varvec{\theta })^{-1} \frac{\mathrm {d} \varSigma (\varvec{\theta })}{\mathrm {d}\varvec{\theta }} \varSigma (\varvec{\theta })^{-1} y. \end{aligned}$$
(14)

With the following simplification

$$\begin{aligned} A = \left( \frac{1}{\sigma _x^2} Id_{N_w} + \frac{1}{\sigma _{\epsilon }^2}K^TK \right) ^{-1}. \end{aligned}$$

the derivative are as follows:

  • Noise parameter.

    $$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}\sigma _{\epsilon }^2}\log \mathcal {L}&= \frac{1}{2} [- N + \frac{1}{\sigma _{\epsilon }^2} Tr(K^T K A) \end{aligned}$$
    (15)
    $$\begin{aligned}&\quad \,+ y^T \left( \frac{1}{\sigma _{\epsilon }^2} Id_{N} - \frac{2}{\sigma _{\epsilon }^4} K A K^T + \frac{1}{\sigma _{\epsilon }^6} K A K^T K A K^T \right) y ]. \end{aligned}$$
    (16)
  • Amplitude parameter.

    $$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}\sigma _x^2}\log \mathcal {L}&= -\frac{1}{2} Tr(\frac{\sigma _{\epsilon }^2}{\sigma _x^2} K^T K) - Tr(\frac{\sigma _x^2}{\sigma _{\epsilon }^4} K^T K A K^T K) \end{aligned}$$
    (17)
    $$\begin{aligned}&\quad \,+ \!\frac{\sigma _x^2}{2} \left( \frac{1}{\sigma _{\epsilon }^2} y^T K - \frac{1}{\sigma _{\epsilon }^4}y^T K A K^T K \!\right) \left( \frac{1}{\sigma _{\epsilon }^2} K^T y - \frac{1}{\sigma _{\epsilon }^4} K^T K A K^T y \right) \end{aligned}$$
    (18)
  • Control points parameters.

    $$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}\mathcal {\theta }_j}\log \mathcal {L}&= -\frac{\sigma _x^2}{\sigma _{\epsilon }^2} Tr(\frac{\mathrm {d}K}{\mathrm {d}\mathcal {\theta }_j} K^T) + \frac{\sigma _x^2}{\sigma _{\epsilon }^4} Tr( K^T K A K^T \frac{\mathrm {d}K}{\mathrm {d}\mathcal {\theta }_j}) \end{aligned}$$
    (19)
    $$\begin{aligned}&\quad \, -2 \frac{\sigma _x^2}{\sigma _{\epsilon }^4} (y^T K \frac{\mathrm {d}K}{\mathrm {d}\mathcal {\theta }_j} y )\end{aligned}$$
    (20)
    $$\begin{aligned}&\quad \, +2 \frac{\sigma _x^2}{\sigma _{\epsilon }^6} ( y^T K A K^T \frac{\mathrm {d}K}{\mathrm {d}\mathcal {\theta }_j} K^T y + y^T K A K^T K \frac{\mathrm {d}K}{\mathrm {d}\mathcal {\theta }_j} y )\end{aligned}$$
    (21)
    $$\begin{aligned}&\quad \, -2 \frac{\sigma _x^2}{\sigma _{\epsilon }^8} (y^T K A K^T \frac{\mathrm {d}K}{\mathrm {d}\mathcal {\theta }_j} K^T K A K^T y ). \end{aligned}$$
    (22)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Marco, L., Ziegler, G., Alexander, D.C., Ourselin, S. (2015). Modelling Non-stationary and Non-separable Spatio-Temporal Changes in Neurodegeneration via Gaussian Process Convolution. In: Bhatia, K., Lombaert, H. (eds) Machine Learning Meets Medical Imaging. MLMMI 2015. Lecture Notes in Computer Science(), vol 9487. Springer, Cham. https://doi.org/10.1007/978-3-319-27929-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27929-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27928-2

  • Online ISBN: 978-3-319-27929-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics