Skip to main content

An Efficient Numerical Approximation for the Monge-Kantorovich Mass Transfer Problem

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Big Data (MOD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9432))

Included in the following conference series:

  • 2193 Accesses

Abstract

The approximation scheme for the Monge-Kantorovich mass transfer problem on compact spaces proposed in [7] is improved. The upgrade presented is inspired on a meta-heuristic algorithm called Scatter Search in order to reduce the dimensionality of the problem. The new approximation scheme solves finite linear programs similar to the transport problem but with lower dimension. A numerical example is presented and compared with the scheme studied in [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, E., Nash, P.: Linear Programming in Infinite-dimensional Spaces. Wiley, New York (1987)

    MATH  Google Scholar 

  2. Anderson, E., Philpott, A.: Duality and an algorithm for a class of continuous transportation problems. Math. Oper. Res. 9, 222–231 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Wiley-Interscience, New Jersey (2010)

    MATH  Google Scholar 

  4. Bosc, D.: Numerical approximation of optimal transport maps. SSRN (2010)

    Google Scholar 

  5. Deng, Y., Du, W.: Kantorovich metric in computer science: a brief survey. Electron. Notes Theoret. Comput. Sci. 353(3), 73–82 (2009)

    Article  Google Scholar 

  6. Evans, S., Matsen, F.: The phylogenetic kantorovich-rubinstein metric for environmental sequence samples. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 74(3), 569–592 (2012)

    Article  MathSciNet  Google Scholar 

  7. Gabriel, J., González-Hernández, J., López-Martínez, R.: Numerical approximations to the mass transfer problem on compact spaces. IMA J. Numer. Anal. 30, 1121–1136 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 1–51. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. González-Hernández, J., Gabriel, J., Hernández-Lerma, O.: On solutions to the mass transfer problem. SIAM J. Optim. 17, 485–499 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vision 63, 225–240 (2004)

    Article  Google Scholar 

  11. Hanin, L., Rachev, S., Yakovlev, A.: On the optimal control of cancer radiotherapy for non-homogeneous cell population. Adv. Appl. Probab. 25, 1–23 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hernández-Lerma, O., Lasserre, J.: Approximation schemes for infinite linear programs. SIAM J. Optim. 8, 973–988 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kantorovich, L.: On a problem of monge. J. Math. Sci. 133(4), 225–226 (2006)

    Google Scholar 

  14. Kantorovich, L.: On the translocation of masses. J. Math. Sci. 133(4), 1381–1382 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Levin, V.: Optimality conditions and exact solutions to the two-dimensional monge-kantorovich problem. J. Math. Sci. 133(4), 1456–1463 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martí, R., Laguna, M., Glover, F.: Principles of scatter search. Eur. J. Oper. Res. 169, 359–372 (2006)

    Article  MATH  Google Scholar 

  17. Mèrigot, Q.: A multiscale approach to optimal transport. Computer Graphics Forum 30(5), 1583–1592 (2011)

    Article  Google Scholar 

  18. Monge, G.: Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie Royale, Paris (1781)

    Google Scholar 

  19. Rachev, S.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York (1991)

    MATH  Google Scholar 

  20. Rachev, S., Rüschendorf, L.: Mass Transportation Problems, vol.I and II. Springer, New York (1998)

    Google Scholar 

  21. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Avendaño-Garrido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Avendaño-Garrido, M.L., Gabriel-Argüelles, J.R., Quintana-Torres, L., Mezura-Montes, E. (2015). An Efficient Numerical Approximation for the Monge-Kantorovich Mass Transfer Problem. In: Pardalos, P., Pavone, M., Farinella, G., Cutello, V. (eds) Machine Learning, Optimization, and Big Data. MOD 2015. Lecture Notes in Computer Science(), vol 9432. Springer, Cham. https://doi.org/10.1007/978-3-319-27926-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27926-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27925-1

  • Online ISBN: 978-3-319-27926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics