Abstract
The approximation scheme for the Monge-Kantorovich mass transfer problem on compact spaces proposed in [7] is improved. The upgrade presented is inspired on a meta-heuristic algorithm called Scatter Search in order to reduce the dimensionality of the problem. The new approximation scheme solves finite linear programs similar to the transport problem but with lower dimension. A numerical example is presented and compared with the scheme studied in [7].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, E., Nash, P.: Linear Programming in Infinite-dimensional Spaces. Wiley, New York (1987)
Anderson, E., Philpott, A.: Duality and an algorithm for a class of continuous transportation problems. Math. Oper. Res. 9, 222–231 (1984)
Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Wiley-Interscience, New Jersey (2010)
Bosc, D.: Numerical approximation of optimal transport maps. SSRN (2010)
Deng, Y., Du, W.: Kantorovich metric in computer science: a brief survey. Electron. Notes Theoret. Comput. Sci. 353(3), 73–82 (2009)
Evans, S., Matsen, F.: The phylogenetic kantorovich-rubinstein metric for environmental sequence samples. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 74(3), 569–592 (2012)
Gabriel, J., González-Hernández, J., López-Martínez, R.: Numerical approximations to the mass transfer problem on compact spaces. IMA J. Numer. Anal. 30, 1121–1136 (2010)
Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 1–51. Springer, Heidelberg (1998)
González-Hernández, J., Gabriel, J., Hernández-Lerma, O.: On solutions to the mass transfer problem. SIAM J. Optim. 17, 485–499 (2006)
Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vision 63, 225–240 (2004)
Hanin, L., Rachev, S., Yakovlev, A.: On the optimal control of cancer radiotherapy for non-homogeneous cell population. Adv. Appl. Probab. 25, 1–23 (1993)
Hernández-Lerma, O., Lasserre, J.: Approximation schemes for infinite linear programs. SIAM J. Optim. 8, 973–988 (1998)
Kantorovich, L.: On a problem of monge. J. Math. Sci. 133(4), 225–226 (2006)
Kantorovich, L.: On the translocation of masses. J. Math. Sci. 133(4), 1381–1382 (2006)
Levin, V.: Optimality conditions and exact solutions to the two-dimensional monge-kantorovich problem. J. Math. Sci. 133(4), 1456–1463 (2006)
Martí, R., Laguna, M., Glover, F.: Principles of scatter search. Eur. J. Oper. Res. 169, 359–372 (2006)
Mèrigot, Q.: A multiscale approach to optimal transport. Computer Graphics Forum 30(5), 1583–1592 (2011)
Monge, G.: Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie Royale, Paris (1781)
Rachev, S.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York (1991)
Rachev, S., Rüschendorf, L.: Mass Transportation Problems, vol.I and II. Springer, New York (1998)
Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Avendaño-Garrido, M.L., Gabriel-Argüelles, J.R., Quintana-Torres, L., Mezura-Montes, E. (2015). An Efficient Numerical Approximation for the Monge-Kantorovich Mass Transfer Problem. In: Pardalos, P., Pavone, M., Farinella, G., Cutello, V. (eds) Machine Learning, Optimization, and Big Data. MOD 2015. Lecture Notes in Computer Science(), vol 9432. Springer, Cham. https://doi.org/10.1007/978-3-319-27926-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-27926-8_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27925-1
Online ISBN: 978-3-319-27926-8
eBook Packages: Computer ScienceComputer Science (R0)