Skip to main content

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1320 Accesses

Abstract

In this chapter, prototype microwave breast imaging systems will be presented. Rather than focusing on historical developments, preference will be given to systems which are now fully operational and have been evaluated using patients. At time of printing, only the prototype systems at Dartmouth College, the University of Bristol, the University of Calgary, McGill University, and the Electronics and Telecommunications Research Institute (ETRI), Korea, have reached an operational level. These systems are described first in Sect. 6.1. The prototype animal imaging system from Carolinas Medical Center is also included since it exhibits many similarities with breast cancer systems. Note: the prototype system from the Technical University of Istanbul and the company Mitos has also been trialled on patients, but full details of the system and corresponding clinical results have not been published and therefore it has not been included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar SM, Al-Joumayly MA, Burfeindt MJ, Behdad N, Hagness SC (2014) Multiband Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array. IEEE Transactions on Antennas and Propagation 62(3):1221–1231, DOI 10.1109/TAP.2013.2295615

    Article  ADS  Google Scholar 

  2. Al-Joumayly MA, Aguilar SM, Behdad N, Hagness SC (2010) Dual-Band Miniaturized Patch Antennas for Microwave Breast Imaging. IEEE Antennas and Wireless Propagation Letters 9:268–271, DOI 10.1109/LAWP.2010.2045871

    Article  ADS  Google Scholar 

  3. Amineh RK, Ravan M, Trehan A, Nikolova NK (2011) Near-field microwave imaging based on aperture raster scanning with TEM horn antennas. IEEE Transactions on Antennas and Propagation 59(3):928–940

    Article  ADS  Google Scholar 

  4. Amineh RK, Khalatpour A, Xu H, Baskharoun Y, Nikolova (2012) Three-Dimensional Near-Field Microwave Holography for Tissue Imaging. International Journal of Biomedical Imaging 2012:1–11

    Google Scholar 

  5. Asefi M, OstadRahimi M, Zakaria A, LoVetri J (2014) A 3-d dual-polarized near-field microwave imaging system. Microwave Theory and Techniques, IEEE Transactions on 62(8):1790–1797

    Article  ADS  Google Scholar 

  6. Baran A, Kurrant D, Zakaria A, Fear E, LoVetri J (2014) Breast imaging using microwave tomography with radar-based tissue-regions estimation. In: Progress In Electromagnetics Research (PIER), vol 149, pp 161–171

    Google Scholar 

  7. Bialkowski ME, Wang Y, Bakar AA, Khor WC (2010) UWB microwave imaging system including circular array antenna. In: Proceedings on 18th International Conference on Microwave Radar and Wireless Communications (MIKON), 2010, pp 1–4

    Google Scholar 

  8. Bialkowski ME, Wang Y, Bakar AA, Khor WC (2012) Microwave imaging using ultra wideband frequency-domain data. Microwave and Optical Technology Letters 54(1):13–18, DOI 10.1002/mop.26465

    Article  Google Scholar 

  9. Bourqui J, Okoniewski M, Fear EC (2010) Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging. IEEE Transactions on Antennas and Propagation 58(7):2318–2326, DOI 10.1109/TAP.2010.2048844

    Article  ADS  Google Scholar 

  10. Bourqui J, Garrett J, Fear E (2012a) Measurement and analysis of microwave frequency signals transmitted through the breast. Journal of Biomedical Imaging 2012:1–11

    Google Scholar 

  11. Bourqui J, Sill JM, Fear EC (2012b) A Prototype System for Measuring Microwave Frequency Reflections from the Breast. International Journal of Biomedical Imaging 2012:1–12, DOI 10.1155/2012/851234

    Google Scholar 

  12. Ciocan R, Jiang H (2004) Model-based microwave image reconstruction: simulations and experiments. Medical Physics 31(12):3231–3241

    Article  ADS  Google Scholar 

  13. Curtis C, Frayne R, Fear E (2012) Using X-Ray Mammograms to Assist in Microwave Breast Image Interpretation. International Journal of Biomedical Imaging 2012:1–11, DOI 10.1155/2012/235380

    Google Scholar 

  14. Epstein NR, Meaney PM, Paulsen KD (2014) 3d parallel-detection microwave tomography for clinical breast imaging. Review of Scientific Instruments 85(12):124,704, DOI 10.1063/1.4901936

    Article  Google Scholar 

  15. Fear EC, Bourqui J, Curtis C, Mew D, Docktor B, Romano C (2013) Microwave Breast Imaging With a Monostatic Radar-Based System: A Study of Application to Patients. IEEE Transactions on Microwave Theory and Techniques 61(5):2119–2128, DOI 10.1109/TMTT.2013.2255884

    Article  ADS  Google Scholar 

  16. Fhager A, Koster J, Rubaek T, Persson M (2011) Modeling and reconstruction in a 3d microwave imaging system. In: General Assembly and Scientific Symposium, 2011 XXXth URSI, pp 1–4

    Google Scholar 

  17. Fhager A, Gustafsson M, Nordebo S (2012) Image Reconstruction in Microwave Tomography Using a Dielectric Debye Model. IEEE Transactions on Biomedical Engineering 59(1):156–166, DOI 10.1109/TBME.2011.2168606

    Article  Google Scholar 

  18. Flores-Tapia D, Pistorius S (2011) Real-time breast microwave radar image reconstruction using circular holography: A study of experimental feasibility. Medical Physics 38(10):5420–5431

    Article  ADS  Google Scholar 

  19. Franchois A, Joisel A, Pichot C, Bolomey JC (1998) Quantitative microwave imaging with a 2.45-GHz planar microwave camera. IEEE Transactions on Medical Imaging 17(4):550–561

    Article  Google Scholar 

  20. Gilmore C, Mojabi P, Zakaria A, Ostadrahimi M, Kaye C, Noghanian S, Shafai L, Pistorius S, LoVetri J (2010a) A Wideband Microwave Tomography System With a Novel Frequency Selection Procedure. IEEE Transactions on Biomedical Engineering 57(4):894–904, DOI 10.1109/TBME.2009.2036372

    Article  Google Scholar 

  21. Gilmore C, Mojabi P, Zakaria A, Pistorius S, LoVetri J (2010b) On Super-Resolution With an Experimental Microwave Tomography System. IEEE Antennas and Wireless Propagation Letters 9:393–396, DOI 10.1109/LAWP.2010.2049471

    Article  ADS  Google Scholar 

  22. Gilmore C, Zakaria A, Mojabi P, Ostadrahimi M, Pistorius S, Lo Vetri J (2011) The University of Manitoba Microwave Imaging Repository: A two-dimensional microwave scattering database for testing inversion and calibration algorithms. IEEE Antennas and Propagation Magazine 53(5):126–133

    Article  Google Scholar 

  23. Grzegorczyk TM, Meaney PM, Kaufman PA, diFlorio Alexander RM, Paulsen KD (2012) Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection. IEEE Transactions on Medical Imaging 31(8):1584–1592, DOI 10.1109/TMI.2012.2197218

    Article  Google Scholar 

  24. Guardiola M, Capdevila S, Blanch S, Romeu J, Jofre L (2009a) UWB high-contrast robust tomographic imaging for medical applications. In: Electromagnetics in Advanced Applications, 2009. ICEAA’09. International Conference on, pp 560–563

    Google Scholar 

  25. Guardiola M, Capdevila S, Jofre L (2009b) UWB BiFocusing tomography for breast tumor detection. In: Proceedings of 3rd European Conference on Antennas and Propagation 2009, pp 1855–1859

    Google Scholar 

  26. Guardiola M, Jofre L, Capdevila S, Blanch S, Romeu J (2010) Toward 3d UWB tomographic imaging system for breast tumor detection. In: Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), 2010, pp 1–5

    Google Scholar 

  27. Guardiola M, Jofre L, Capdevila S, Blanch S, Romeu J (2011) 3d UWB magnitude-combined tomographic imaging for biomedical applications. Algorithm validation. Radio Engineering 20(2):366–372

    Google Scholar 

  28. Haynes M, Stang J, Moghaddam M (2012) Microwave Breast Imaging System Prototype with Integrated Numerical Characterization. International Journal of Biomedical Imaging 2012:1–18, DOI 10.1155/2012/706365

    Article  Google Scholar 

  29. Henriksson T, Joachimowicz N, Conessa C, Bolomey JC (2010) Quantitative Microwave Imaging for Breast Cancer Detection Using a Planar 2.45 GHz System. IEEE Transactions on Instrumentation and Measurement 59(10):2691–2699, DOI 10.1109/TIM.2010.2045540

    Article  Google Scholar 

  30. Henriksson T, Klemm M, Gibbins D, Leendertz J, Horseman T, Preece AW, Benjamin R, Craddock IJ (2011) Clinical trials of a multistatic UWB radar for breast imaging. In: Loughborough Antennas and Propagation Conference (LAPC), 2011, pp 1–4

    Article  Google Scholar 

  31. Jensen PD, Rubaek T, Mohr JJ, Zhurbenko V (2011) Nonlinear 3-D microwave imaging for breast-cancer screening: Log, phase and log-phase formulation. In: Loughborough Antennas and Propagation Conference (LAPC), 2011, p 4 pages

    Google Scholar 

  32. Jensen PD, Rubak T, Mohr JJ (2012) Utilization of multiple frequencies in 3d nonlinear microwave imaging. In: 6th European Conference on Antennas and Propagation (EUCAP), 2012, pp 1776–1779

    Google Scholar 

  33. Jiang H, Li C, Pearlstone D, Fajardo LL (2005) Ultrasound-guided microwave imaging of breast cancer: Tissue phantom and pilot clinical experiments. Medical Physics 32(8):2528–2535

    Article  ADS  Google Scholar 

  34. Joisel A, Bolomey JC (2000) Rapid microwave imaging of living tissues. Proceedings of the SPIE - The International Society for Optical Engineering 3977:320–330

    ADS  Google Scholar 

  35. Klemm M, Craddock IJ, Leendertz JA, Preece A, Benjamin R (2009) Radar-Based Breast Cancer Detection Using a Hemispherical Antenna–Experimental Results. IEEE Transactions on Antennas and Propagation 57(6):1692–1704, DOI 10.1109/TAP.2009.2019856

    Article  ADS  Google Scholar 

  36. Klemm M, Leendertz JA, Gibbins D, Craddock IJ, Preece A, Benjamin R (2010) Microwave radar-based differential breast cancer imaging: imaging in homogeneous breast phantoms and low contrast scenarios. IEEE Transactions on Antennas and Propagation 58(7):2337–2344

    Article  ADS  Google Scholar 

  37. Kwon KC, Lim YT, Kim CH, Kim N, Park C, Yoo KH, Son SH, Jeon SI (2012) Microwave Tomography Analysis System for Breast Tumor Detection. Journal of Medical Systems 36(3):1757–1767, DOI 10.1007/s10916-010-9635-4

    Article  Google Scholar 

  38. Lai JCY, Soh CB, Gunawan E, Low KS (2011) UWB microwave imaging for breast cancer detection—experiments with heterogeneous breast phantoms. Progress In Electromagnetics Research M 16:19–29

    Article  Google Scholar 

  39. Lazaro A, Girbau D, Villarino R (2009a) Simulated and experimental investigation of microwave imaging using UWB. In: Progress In Electromagnetics Research (PIER), vol 94, pp 263–280

    Google Scholar 

  40. Lazaro A, Girbau D, Villarino R (2009b) Wavelet-based breast tumor localization technique using a UWB radar. In: Progress In Electromagnetics Research (PIER), vol 98, pp 75–95

    Google Scholar 

  41. Lee J, Son S, Kim B, Choi H, Jeon S (2014) Animal Testing using 3d Microwave Tomography system for Breast Cancer Detection. e-Health – For Continuity of Care pp 491–495

    Google Scholar 

  42. Li D, Meaney PM, Paulsen KD (2003) Conformal microwave imaging for breast cancer detection. IEEE Transactions on Microwave Theory and Techniques 51(4):1179–1186

    Article  ADS  Google Scholar 

  43. Meaney PM, Fanning MW, Li D, Poplack SP, Paulsen KD (2000) A clinical prototype for active microwave imaging of the breast. IEEE Transactions on Microwave Theory and Techniques 48(11):1841–1853

    Article  ADS  Google Scholar 

  44. Meaney PM, Fanning MW, Raynolds T, Fox CJ, Fang Q, Kogel CA, Poplack SP, Paulsen KD (2007) Initial Clinical Experience with Microwave Breast Imaging in Women with Normal Mammography. Academic Radiology 14(2):207–218, DOI 10.1016/j.acra.2006.10.016

    Article  Google Scholar 

  45. Meaney PM, Golnabi AH, Epstein NR, Geimer SD, Fanning MW, Weaver JB, Paulsen KD (2013a) Integration of microwave tomography with magnetic resonance for improved breast imaging. Medical Physics 40(10):103,101, DOI 10.1118/1.4820361

    Article  Google Scholar 

  46. Meaney PM, Kaufman PA, Muffly LS, Click M, Poplack SP, Wells WA, Schwartz GN, di Florio-Alexander RM, Tosteson TD, Li Z, others (2013b) Microwave imaging for neoadjuvant chemotherapy monitoring: initial clinical experience. Breast Cancer Res 15(2):1–16

    Google Scholar 

  47. Mohammed BJ, Abbosh AM, Sharpe P (2013) Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system. International Journal of RF and Microwave Computer-Aided Engineering 23(1):59–66, DOI 10.1002/mmce.20651

    Article  Google Scholar 

  48. Ostadrahimi M, Mojabi P, Noghanian S, Shafai L, Pistorius S, LoVetri J (2012) A Novel Microwave Tomography System Based on the Scattering Probe Technique. IEEE Transactions on Instrumentation and Measurement 61(2):379–390, DOI 10.1109/TIM.2011.2161931

    Article  Google Scholar 

  49. Ostadrahimi M, Mojabi P, Zakaria A, LoVetri J, Shafai L (2013a) Enhancement of Gauss-Newton Inversion Method for Biological Tissue Imaging. IEEE Transactions on Microwave Theory and Techniques 61(9):3424–3434, DOI 10.1109/TMTT.2013.2273758

    Article  ADS  Google Scholar 

  50. Ostadrahimi M, Zakaria A, LoVetri J, Shafai L (2013b) A near-field dual polarized (te–tm) microwave imaging system. Microwave Theory and Techniques, IEEE Transactions on 61(3):1376–1384

    Article  ADS  Google Scholar 

  51. Padhi SK, Fhager A, Persson M, Howard J (2008) Measured Antenna Response of a Proposed Microwave Tomography System Using an Efficient 3-D FDTD Model. IEEE Antennas and Wireless Propagation Letters 7:689–692, DOI 10.1109/LAWP.2008.2009888

    Article  ADS  Google Scholar 

  52. Pallone MJ, Meaney PM, Paulsen KD (2012) Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams. Medical Physics 39(6):3102–3111

    Article  ADS  Google Scholar 

  53. Poplack SP, Tosteson TD, Wells WA, Pogue BW, Meaney PM, Hartov A, Kogel CA, Soho SK, Gibson JJ, Paulsen KD (2007) Electromagnetic Breast Imaging: Results of a Pilot Study in Women with Abnormal Mammograms. Radiology 243(2):350–359

    Article  Google Scholar 

  54. Porter E, Fakhoury J, Oprisor R, Coates M, Popovic M (2010) Improved tissue phantoms for experimental validation of microwave breast cancer detection. In: Antennas and Propagation (EuCAP), 2010 Proceedings of the Fourth European Conference on, IEEE, pp 1–5

    Google Scholar 

  55. Porter E, Kirshin E, Santorelli A, Coates M, Popovic M (2013a) Time-domain multistatic radar system for microwave breast screening. Antennas and Wireless Propagation Letters, IEEE 12:229–232

    Article  ADS  Google Scholar 

  56. Porter E, Kirshin E, Santorelli A, Popovic M (2013b) A clinical prototype for microwave breast imaging using time-domain measurements. In: Antennas and Propagation (EuCAP), 2013 7th European Conference on, IEEE, pp 830–832

    Google Scholar 

  57. Porter E, Santorelli A, Popovic M (2014) Time-domain microwave radar applied to breast imaging: Measurement reliability in a clinical setting. In: Progress In Electromagnetics Research (PIER), vol 149, pp 119–132

    Google Scholar 

  58. Porter E, Coates M, Popovic M (2015) An early clinical study of time-domain microwave radar for breast health monitoring. IEEE Transactions on Biomedical Engineering PP(99):(early access), DOI 10.1109/TBME.2015.2465867

  59. Rubaek T, Kim OS, Meincke P (2009) Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening. IEEE Transactions on Antennas and Propagation 57(7):2105–2115, DOI 10.1109/TAP.2009.2021879

    Article  ADS  MathSciNet  Google Scholar 

  60. Santorelli A, Chudzik M, Kirshin E, Porter E, Lujambio A, Arnedo I, Popovic M, Schwartz JD (2013) Experimental demonstration of pulse shaping for time-domain microwave breast imaging. Progress In Electromagnetics Research 133:309–329

    Article  Google Scholar 

  61. Semenov S, Kellam J, Nair B, Williams T, Quinn M, Sizov Y, Nazarov A, Pavlovsky A (2011a) Microwave tomography of extremities: 2. Functional fused imaging of flow reduction and simulated compartment syndrome. Physics in Medicine and Biology 56(7):2019–2030, DOI 10.1088/0031-9155/56/7/007

    Article  ADS  Google Scholar 

  62. Semenov S, Kellam J, Sizov Y, Nazarov A, Williams T, Nair B, Pavlovsky A, Posukh V, Quinn M (2011b) Microwave tomography of extremities: 1. Dedicated 2d system and physiological signatures. Physics in Medicine and Biology 56(7):2005–2017, DOI 10.1088/0031-9155/56/7/007

    Article  ADS  Google Scholar 

  63. Semenov SY, Svenson RH, Bulyshev AE, Souvorov AE, Nazarov AG, Sizov YE, Posukh VG, Pavlovsky A, Repin PN, Starostin AN (2002) Three-dimensional microwave tomography: Initial experimental imaging of animals. IEEE Transactions on Biomedical Engineering 49(1):55–63

    Article  Google Scholar 

  64. Semenov SY, Posukh VG, Bulyshev AE, Williams TC, Sizov YE, Repin PN, Souvorov A, Nazarov A (2006) Microwave Tomographic Imaging of the Heart in Intact Swine. Journal of Electromagnetic Waves and Applications 20(7):873–890, DOI 10.1163/156939306776149897

    Article  Google Scholar 

  65. Son SH (2010) Preclinical Prototype Development of a Microwave Tomography System for Breast Cancer Detection. ETRI Journal 32(6):901–910, DOI 10.4218/etrij.10.0109.0626

    Article  Google Scholar 

  66. Stang J, Haynes M, Carson P, Moghaddam M (2012) A Preclinical System Prototype for Focused Microwave Thermal Therapy of the Breast. IEEE Transactions on Biomedical Engineering 59(9):2431–2438, DOI 10.1109/TBME.2012.2199492

    Article  Google Scholar 

  67. Stang JP, Joines WT, Liu QH, Ybarra GA, George RT, Yuan M, Leonhardt I (2009) A tapered microstrip patch antenna array for use in breast cancer screening via 3d active microwave imaging. In: Antennas and Propagation Society International Symposium, 2009. APSURSI’09. IEEE, IEEE, pp 1–4

    Google Scholar 

  68. Tafreshi AK, Karadas M, Top CB, Gencer NG (2014) Data acquisition system for harmonic motion microwave doppler imaging. In: Engineering in Medicine and Biology Society, 2014. 36th Annual International Conference of the IEEE, pp 2873–2876

    Google Scholar 

  69. Tobon JAV, Dassano G, Vipiana F, Casu MR, Vacca M, Pulimeno A, Vecchi G (2015a) Design and modeling of a microwave imaging system for breast cancer detection. In: Proceedings of 9th European Conference on Antennas and Propagation 2015, p 2 pages

    Google Scholar 

  70. Tobon JAV, Vipiana F, Dassano G, Casu MR, Vacca M, Pulimeno A, Solimene R (2015b) Experimental results on the use of the MUSIC algorithm for early breast cancer detection. In: Electromagnetics in Advanced Applications, 2015. ICEAA’15. International Conference on, pp 1084–1085

    Google Scholar 

  71. Top CB, Gencer NG (2014) Harmonic motion microwave doppler imaging: A simulation study using a simple breast model. IEEE Transactions on Medical Imaging 33(2):290–300

    Article  Google Scholar 

  72. Wei B, Simsek E, Yu C, Liu QH (2007) Three-dimensional electromagnetic nonlinear inversion in layered media by a hybrid diagonal tensor approximation: Stabilized biconjugate gradient fast Fourier transform method. Waves in Random and Complex Media 17(2):129–147

    Article  ADS  MATH  Google Scholar 

  73. Williams TC, Bourqui J, Cameron TR, Okoniewski M, Fear EC (2011) Laser Surface Estimation for Microwave Breast Imaging Systems. IEEE Transactions on Biomedical Engineering 58(5):1193–1199, DOI 10.1109/TBME.2010.2098406

    Article  Google Scholar 

  74. Yang F (2013) Microwave imaging for early stage breast tumor detection and discrimination via complex natural resonances. PhD thesis, Faculty of Engineering & Information Technology, University of Technology, Sydney, Australia

    Google Scholar 

  75. Yu C, Yuan M, Stang J, Bresslour E, George RT, Ybarra GA, Joines WT, Liu QH (2008) Active Microwave Imaging II: 3-D System Prototype and Image Reconstruction From Experimental Data. IEEE Transactions on Microwave Theory and Techniques 56(4):991–1000, DOI 10.1109/TMTT.2008.919661

    Article  ADS  Google Scholar 

  76. Yu C, Mengqing Yuan, Zhang Y, Stang J, George R, Ybarra G, Joines W, Qing Huo Liu (2010) Microwave Imaging in Layered Media: 3-D Image Reconstruction From Experimental Data. IEEE Transactions on Antennas and Propagation 58(2):440–448, DOI 10.1109/TAP.2009.2037770

    Article  ADS  Google Scholar 

  77. Zakaria A, Jeffrey I, LoVetri J (2013) Full-vectorial parallel finite-element contrast source inversion method. Progress In Electromagnetics Research 142:463–483

    Article  Google Scholar 

  78. Zeng X, Fhager A, Linner P, Persson M, Zirath H (2011) Experimental Investigation of the Accuracy of an Ultrawideband Time-Domain Microwave-Tomographic System. IEEE Transactions on Instrumentation and Measurement 60(12):3939–3949, DOI 10.1109/TIM.2011.2141250

    Article  Google Scholar 

  79. Zhang D, Mase A (2011) Experimental study on radar-based breast cancer detection using UWB antennas without background subtraction. Biomedical Engineering: Applications, Basis and Communications 23(05):383–391, DOI 10.4015/S1016237211002712

    Google Scholar 

  80. Zhurbenko V, Rubaek T, Krozer V, Meincke P (2010) Design and realisation of a microwave three-dimensional imaging system with application to breast-cancer detection. IET Microwaves, Antennas & Propagation 4(12):2200–2211, DOI 10.1049/iet-map.2010.0106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Jacob Mohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohr, J.J., Rubæk, T. (2016). Experimental Systems. In: Conceição, R., Mohr, J., O'Halloran, M. (eds) An Introduction to Microwave Imaging for Breast Cancer Detection. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-27866-7_6

Download citation

Publish with us

Policies and ethics