Skip to main content

Semantic Web Technologies for Object Tracking and Video Analytics

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9475))

Included in the following conference series:

Abstract

As demonstrated in several research contexts, some of the best performing state of the art algorithms for object tracking integrate a traditional bottom-up approach with some knowledge of the scene and aims of the algorithm. In this paper, we propose the use of the Semantic Web technology for representing high-level knowledge describing the elements of the scene to be analysed. In particular, we demonstrate how to use the OWL ontology language to describe scene elements and their relationships together with a SPARQL based rule language to infer on the knowledge. The proof of the implemented concept prototype is able to track people even when occlusions between persons and/or objects occur, only using the bounding box dimensions, positions and directions. We also demonstrate how the Semantic Web Technology enables powerful video analytics functions for video surveillance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.w3.org/Submission/spin-overview/.

  2. 2.

    Available at http://www.cvg.reading.ac.uk/PETS2009/a.html.

  3. 3.

    http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/.

References

  1. Tiejun, H.: Surveillance video: the biggest big data. Comput. Now 7 (2014)

    Google Scholar 

  2. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. Comput. Surv. 38, 1–45 (2006)

    Article  Google Scholar 

  3. Ferryman, J., Ellis, A.L.: Performance evaluation of crowd image analysis using the PETS2009 dataset. Pattern Recogn. Lett. 44, 3–15 (2014). Pattern recognition and crowd analysis

    Article  Google Scholar 

  4. Lascio, R.D., Foggia, P., Percannella, G., Saggese, A., Vento, M.: A real time algorithm for people tracking using contextual reasoning. Comput. Vis. Image Underst. 117, 892–908 (2013)

    Article  Google Scholar 

  5. Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: classification, annotation and segmentation in an automatic framework, pp. 2036–2043 (2009)

    Google Scholar 

  6. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261. IEEE (1999)

    Google Scholar 

  7. Zhaoping, L.: Theoretical understanding of the early visual processes by data compression and data selection. Netw. Comput. Neural Syst. (Bristol, England) 17, 301–334 (2006)

    Article  Google Scholar 

  8. DiCarlo, J., Zoccolan, D., Rust, N.: How does the brain solve visual object recognition? Neuron 73, 415–434 (2012)

    Article  Google Scholar 

  9. Baader, F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  10. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43, 907–928 (1995)

    Article  Google Scholar 

  11. McGuinness, D.L., Van Harmele, F., et al.: Owl web ontology language overview. W3C Recommendation 10, 2004 (2004)

    Google Scholar 

  12. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: Owl 2 web ontology language primer. W3C Recommendation 27, 1–123 (2009)

    Google Scholar 

  13. Gomez-Romero, J., Patricio, M.A., Garca, J., Molina, J.M.: Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst. Appl. 38, 7494–7510 (2011)

    Article  Google Scholar 

  14. Knublauch, H.: Spin-modeling vocabulary. W3C Member Submission 22 (2011)

    Google Scholar 

  15. Bloehdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouvaras, V., Avrithis, Y., Handschuh, S., Kompatsiaris, Y., Staab, S., Strintzis, M.G.: Semantic annotation of images and videos for multimedia analysis. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 592–607. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Wang, H., Liu, S., Chia, L.T.: Does ontology help in image retrieval?: a comparison between keyword, text ontology and multi-modality ontology approaches, pp. 109–112 (2006)

    Google Scholar 

  17. Snidaro, L., Belluz, M., Foresti, G.: Representing and recognizing complex events in surveillance applications, pp. 493–498 (2007)

    Google Scholar 

  18. SanMiguel, J., Martinez, J., Garcia, A.: An ontology for event detection and its application in surveillance video. In: Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2009, pp. 220–225 (2009)

    Google Scholar 

  19. Riboni, D., Bettini, C.: Owl 2 modeling and reasoning with complex human activities. Pervasive Mobile Comput. 7, 379–395 (2011)

    Article  Google Scholar 

  20. Meditskos, G., Dasiopoulou, S., Efstathiou, V., Kompatsiaris, I.: SP-ACT: a hybrid framework for complex activity recognition combining owl and sparql rules, pp. 25–30 (2013)

    Google Scholar 

  21. Brickley, D., Miller, L.: Foaf vocabulary specification 0.98. Namespace document 9 (2012)

    Google Scholar 

  22. Conte, D., Foggia, P., Percannella, G., Tufano, F., Vento, M.: An experimental evaluation of foreground detection algorithms in real scenes. EURASIP J. Adv. Sig. Process. 2010, 7 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Ritrovato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gaüzère, B., Greco, C., Ritrovato, P., Saggese, A., Vento, M. (2015). Semantic Web Technologies for Object Tracking and Video Analytics. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9475. Springer, Cham. https://doi.org/10.1007/978-3-319-27863-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27863-6_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27862-9

  • Online ISBN: 978-3-319-27863-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics