Abstract
As demonstrated in several research contexts, some of the best performing state of the art algorithms for object tracking integrate a traditional bottom-up approach with some knowledge of the scene and aims of the algorithm. In this paper, we propose the use of the Semantic Web technology for representing high-level knowledge describing the elements of the scene to be analysed. In particular, we demonstrate how to use the OWL ontology language to describe scene elements and their relationships together with a SPARQL based rule language to infer on the knowledge. The proof of the implemented concept prototype is able to track people even when occlusions between persons and/or objects occur, only using the bounding box dimensions, positions and directions. We also demonstrate how the Semantic Web Technology enables powerful video analytics functions for video surveillance applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tiejun, H.: Surveillance video: the biggest big data. Comput. Now 7 (2014)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. Comput. Surv. 38, 1–45 (2006)
Ferryman, J., Ellis, A.L.: Performance evaluation of crowd image analysis using the PETS2009 dataset. Pattern Recogn. Lett. 44, 3–15 (2014). Pattern recognition and crowd analysis
Lascio, R.D., Foggia, P., Percannella, G., Saggese, A., Vento, M.: A real time algorithm for people tracking using contextual reasoning. Comput. Vis. Image Underst. 117, 892–908 (2013)
Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: classification, annotation and segmentation in an automatic framework, pp. 2036–2043 (2009)
Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261. IEEE (1999)
Zhaoping, L.: Theoretical understanding of the early visual processes by data compression and data selection. Netw. Comput. Neural Syst. (Bristol, England) 17, 301–334 (2006)
DiCarlo, J., Zoccolan, D., Rust, N.: How does the brain solve visual object recognition? Neuron 73, 415–434 (2012)
Baader, F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43, 907–928 (1995)
McGuinness, D.L., Van Harmele, F., et al.: Owl web ontology language overview. W3C Recommendation 10, 2004 (2004)
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: Owl 2 web ontology language primer. W3C Recommendation 27, 1–123 (2009)
Gomez-Romero, J., Patricio, M.A., Garca, J., Molina, J.M.: Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst. Appl. 38, 7494–7510 (2011)
Knublauch, H.: Spin-modeling vocabulary. W3C Member Submission 22 (2011)
Bloehdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouvaras, V., Avrithis, Y., Handschuh, S., Kompatsiaris, Y., Staab, S., Strintzis, M.G.: Semantic annotation of images and videos for multimedia analysis. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 592–607. Springer, Heidelberg (2005)
Wang, H., Liu, S., Chia, L.T.: Does ontology help in image retrieval?: a comparison between keyword, text ontology and multi-modality ontology approaches, pp. 109–112 (2006)
Snidaro, L., Belluz, M., Foresti, G.: Representing and recognizing complex events in surveillance applications, pp. 493–498 (2007)
SanMiguel, J., Martinez, J., Garcia, A.: An ontology for event detection and its application in surveillance video. In: Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2009, pp. 220–225 (2009)
Riboni, D., Bettini, C.: Owl 2 modeling and reasoning with complex human activities. Pervasive Mobile Comput. 7, 379–395 (2011)
Meditskos, G., Dasiopoulou, S., Efstathiou, V., Kompatsiaris, I.: SP-ACT: a hybrid framework for complex activity recognition combining owl and sparql rules, pp. 25–30 (2013)
Brickley, D., Miller, L.: Foaf vocabulary specification 0.98. Namespace document 9 (2012)
Conte, D., Foggia, P., Percannella, G., Tufano, F., Vento, M.: An experimental evaluation of foreground detection algorithms in real scenes. EURASIP J. Adv. Sig. Process. 2010, 7 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Gaüzère, B., Greco, C., Ritrovato, P., Saggese, A., Vento, M. (2015). Semantic Web Technologies for Object Tracking and Video Analytics. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9475. Springer, Cham. https://doi.org/10.1007/978-3-319-27863-6_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-27863-6_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27862-9
Online ISBN: 978-3-319-27863-6
eBook Packages: Computer ScienceComputer Science (R0)