Advertisement

SeLibCV: A Service Library for Computer Vision Researchers

  • Ahmad P. Tafti
  • Hamid Hassannia
  • Dee Piziak
  • Zeyun Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)

Abstract

Image feature detectors and descriptors have made a big advance in several computer vision applications including object recognition, image registration, remote sensing, panorama stitching, and 3D surface reconstruction. Most of these fundamental algorithms are complicated in code, and their implementations are available for only a few platforms. This operational restriction causes various difficulties to utilize them, and even more, it makes different challenges to establish novel experiments and develop new research ideas. SeLibCV is a Software as a Service (SaaS) library for computer vision researchers worldwide that facilitates Rapid Application Development (RAD), and provides application-to-application interaction by tiny services accessible through the Internet. Its functionality covers a wide range of computer vision algorithms including image processing, features extraction, motion detection, visualization, and 3D surface reconstruction. The present paper focuses on the SeLibCV’s routines specializing in local features detection, extraction, and matching algorithms which offer reusable and platform independent components, leading to reproducible research for computer vision scientists. SeLibCV is freely available at http://selibcv.org for any academic, educational, and research purposes.

Keywords

Scale Invariant Feature Transform Computer Vision Application Computer Vision Algorithm Computer Vision Community Feature Point Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    World wide web consortium. http://www.w3.org/
  2. 2.
  3. 3.
    Lowe’s executable sift software (2005). http://www.cs.ubc.ca/lowe/keypoints/
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    Computer vision system toolbox\(^{\rm TM}\) matlab (2014). http://www.mathworks.com/products/computer-vision/
  9. 9.
    Selibcv (2015). http://selibcv.org
  10. 10.
    Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski, R.: Building rome in a day. Commun. ACM 54(10), 105–112 (2011)CrossRefGoogle Scholar
  11. 11.
    Almorsy, M., Grundy, J., Ibrahim, A.: Adaptable, model-driven security engineering for saas cloud-based applications. Autom. Softw. Eng. 21, 187–224 (2014)CrossRefGoogle Scholar
  12. 12.
    Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992)MathSciNetGoogle Scholar
  13. 13.
    Baghaie, A., D’souza, R.M., Yu, Z.: Sparse and low rank decomposition based batch image alignment for speckle reduction of retinal oct images (2014). arXiv preprint arXiv:1411.4033
  14. 14.
    Baghaie, A., Yu, Z.: Curvature-based registration for slice interpolation of medical images. In: Zhang, Y.J., Tavares, J.M.R.S. (eds.) CompIMAGE 2014. LNCS, vol. 8641, pp. 69–80. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley, Boston (2013) Google Scholar
  16. 16.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: speed up robust features. Comput. Vis. Image Underst. (CVIU) 110, 346–359 (2008)CrossRefGoogle Scholar
  17. 17.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Eriksson, H.-E., Penker, M.: Business modeling with UML. Wiley, Hoboken (2000) Google Scholar
  19. 19.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Girod, B., Chandrasekhar, V., Chen, D.M., Cheung, N.-M., Grzeszczuk, R., Reznik, Y., Takacs, G., Tsai, S.S., Vedantham, R.: Mobile visual search. IEEE Signal Process. Mag. 28(4), 61–76 (2011)CrossRefGoogle Scholar
  21. 21.
    Hamidi, S.A., Bravo, H.R., Klump, J.V., Waples, J.T.: The role of circulation and heat fluxes in the formation of stratification leading to hypoxia in Green Bay, Lake Michigan. J. Great Lakes Res. (2015)Google Scholar
  22. 22.
    Hatch, R.: SaaS Architecture, Adoption and Monetization of SaaS Projects using Best Practice Service Strategy, Service Design, Service Transition. Service Operation and Continual Service Improvement Processes. Brisbane, Emereo Pty Ltd (2008) Google Scholar
  23. 23.
    Huang, H., Guo, W., and Zhang, Y.: Detection of copy-move forgery in digital images using sift algorithm. In: Computational Intelligence and Industrial Application, PACIIA 2008, vol. 2 (2008)Google Scholar
  24. 24.
    Huijuan, Z., Qiong, H.: Fast image matching based-on improved surf algorithm. In: 2011 International Conference on Electronics, Communications and Control (ICECC), pp. 1460–1463. IEEE (2011)Google Scholar
  25. 25.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)CrossRefGoogle Scholar
  26. 26.
    Kruchten, P.B.: The 4+ 1 view model of architecture. IEEE Softw. 12, 42–50 (1995)CrossRefGoogle Scholar
  27. 27.
    li Song, Z., Li, S., George, T.F.: Remote sensing image registration approach based on a retrofitted sift algorithm and lissajous-curve trajectories. Opt. Express 18(2), 513–522 (2010)CrossRefGoogle Scholar
  28. 28.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, Corfu, Greece, pp. 1150–1157 (1999)Google Scholar
  29. 29.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  30. 30.
    Song, Z.L., Zhang, J.: Remote sensing image registration based on retrofitted surf algorithm and trajectories generated from lissajous figures. IEEE Geosci. Remote Sens. Lett. 7(3), 491–495 (2010)CrossRefGoogle Scholar
  31. 31.
    Srinivasan, L., Treadwell, J.: An overview of service-oriented architecture, web services, and grid computing. HP Software Global Business Unit (2005)Google Scholar
  32. 32.
    Tafti, A.P., Baghaie, A., Kirkpatrick, A.B., Owen, H.A., D’Souza, R.M., Yu, Z.: A comparative study on the application of sift, surf, brief and orb for 3d surface reconstruction of electron microscopy images. In: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization (2015)Google Scholar
  33. 33.
    Tafti, A.P., Hassannia, H., Yu, Z.: siftservice. com-turning a computer vision algorithm into a world wide web service (2015a). arXiv preprint arXiv:1504.02840
  34. 34.
    Tafti, A.P., Kirkpatrick, A.B., Owen, H.A., Yu, Z.: 3D microscopy vision using multiple view geometry and differential evolutionary approaches. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., McMahan, R., Jerald, J., Zhang, H., Drucker, S.M., Kambhamettu, C., El Choubassi, M., Deng, Z., Carlson, M. (eds.) ISVC 2014, Part II. LNCS, vol. 8888, pp. 141–152. Springer, Heidelberg (2014) Google Scholar
  35. 35.
    Tafti, A.P., Kirkpatrick, A.B., Alavi, Z., Owen, H.A., Yu, Z.: Recent advances in 3d sem surface reconstruction. Micron 78, 54–66 (2015b)CrossRefGoogle Scholar
  36. 36.
    Teke, M., Temizel, A.: Multi-spectral satellite image registration using scale-restricted surf. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2310–2313. IEEE (2010)Google Scholar
  37. 37.
    Yu, J., Lin, J.: An architecture for cloud-based consumer support software-as-a-service. In: IEEE International Symposium on Computer, Consumer and Control (IS3C) (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ahmad P. Tafti
    • 1
  • Hamid Hassannia
    • 2
  • Dee Piziak
    • 1
  • Zeyun Yu
    • 1
  1. 1.Department of Computer ScienceUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.IEEE MemberUppsalaSweden

Personalised recommendations