Skip to main content

Hybrid Example-Based Single Image Super-Resolution

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9475))

Included in the following conference series:

Abstract

Image super-resolution aims to recover a visually pleasing high resolution image from one or multiple low resolution images. It plays an essential role in a variety of real-world applications. In this paper, we propose a novel hybrid example-based single image super-resolution approach which integrates learning from both external and internal exemplars. Given an input image, a proxy image with the same resolution as the target high-resolution image is first generated from a set of externally-learnt regression models. We then perform a coarse-to-fine gradient-level self-refinement on the proxy image guided by the input image. Finally, the refined high-resolution gradients are fed into a uniform energy function to recover the final output. Extensive experiments demonstrate that our framework outperforms the recent state-of-the-art single image super-resolution approaches both quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boulanger, J., Kervrann, C., Bouthemy, P.: Space-time adaptation for patch-based image sequence restoration. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1096–1102 (2007)

    Article  Google Scholar 

  2. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13, 1327–1344 (2004)

    Article  Google Scholar 

  3. Protter, M., Elad, M., Tekeda, H., Milanfar, P.: Generalizing the non-local-means to super-resolution reconstruction. IEEE Trans. Image Process. 18, 36–51 (2009)

    Article  MathSciNet  Google Scholar 

  4. Shi, B., Zhao, H., Ben-Ezra, M., Yeung, S.-K., Fernandez-Cull, C., Shepard, R.H., Barsi, C., Raskar, R.: Sub-pixel layout for super-resolution with images in the octic group. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 250–264. Springer, Heidelberg (2014)

    Google Scholar 

  5. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 1521–1527 (2001)

    Article  Google Scholar 

  6. Su, D., Willis, P.: Image interpolation by pixel-level data-dependent triangulation. Comput. Graph. Forum 23, 189–201 (2004)

    Article  Google Scholar 

  7. Tai, Y., Liu, S., Brown, M., Lin, S.: Super resolution using edge prior and single image detail synthesis. In: CVPR (2010)

    Google Scholar 

  8. Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. Image Process. 14, 1647–1659 (2005)

    Article  MathSciNet  Google Scholar 

  9. Shan, Q., Li, Z., Jia, J., Tang, C.K.: Fast image/video upsampling. In: ACM SIGGRAPH Asia (2008)

    Google Scholar 

  10. Fattal, R.: Image upsampling via imposed edge statistics. In: ACM SIGGRAPH (2007)

    Google Scholar 

  11. Sun, J., Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: CVPR (2008)

    Google Scholar 

  12. Huang, J., Mumford, D.: Statistics of natural images and models. In: CVPR (1999)

    Google Scholar 

  13. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 40, 25–47 (2000)

    Article  MATH  Google Scholar 

  14. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. Comput. Graph. Appl. 22, 56–65 (2002)

    Article  Google Scholar 

  15. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR (2008)

    Google Scholar 

  16. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  17. HaCohen, Y., Fattal, R., Lischinski, D.: Image upsampling via texture hallucination. In: ICCP (2010)

    Google Scholar 

  18. Sun, J., Zhu, J., Tappen, M.F.: Context-constrained hallucination for image super-resolution. In: CVPR (2010)

    Google Scholar 

  19. Timofte, R., Smet, V.D., Gool, L.V.: Anchored neighborhood regression for fast example-based super-resolution. In: ICCV (2013)

    Google Scholar 

  20. Zhu, Y., Zhang, Y., Yuille, A.L.: Single image super-resolution using deformable patches. In: CVPR (2014)

    Google Scholar 

  21. Yang, C.Y., Yang, M.H.: Fast direct super-resolution by simple functions. In: ICCV (2013)

    Google Scholar 

  22. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV (2009)

    Google Scholar 

  23. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 28, 1–10 (2010)

    Google Scholar 

  24. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)

    Google Scholar 

  25. Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression. In: CVPR (2013)

    Google Scholar 

  26. Zontak, M., Irani, M.: Internal statistics of a single natural image. In: CVPR (2011)

    Google Scholar 

  27. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  28. Bevilacqua, M., Roumy, A., Guillemot, C., Morel, M.A.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

    Google Scholar 

  29. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. Curves Surf. 6920, 711–730 (2010)

    Article  MathSciNet  Google Scholar 

  30. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 184–199. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by ONR grant N000141310450 and NSF grants EFRI-1137172, IIP-1343402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xian, Y., Yang, X., Tian, Y. (2015). Hybrid Example-Based Single Image Super-Resolution. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9475. Springer, Cham. https://doi.org/10.1007/978-3-319-27863-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27863-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27862-9

  • Online ISBN: 978-3-319-27863-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics