Skip to main content

Group Based Asymmetry–A Fast Saliency Algorithm

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2831 Accesses

Abstract

In this paper, we propose a saliency model that makes two major changes in a latest state-of-the-art model known as group based asymmetry. First, based on the properties of the dihedral group \(D_4\) we simplify the asymmetry calculations associated with the measurement of saliency. This results is an algorithm which reduces the number of calculations by at-least half that makes it the fastest among the six best algorithms used in this paper. Second, in order to maximize the information across different chromatic and multi-resolution features the color image space is de-correlated. We evaluate our algorithm against 10 state-of-the-art saliency models. Our results show that by using optimal parameters for a given data-set our proposed model can outperform the best saliency algorithm in the literature. However, as the differences among the (few) best saliency models are small we would like to suggest that our proposed fast GBA model is among the best and the fastest among the best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsam, A., Sharma, P., Wrålsen, A.: Asymmetry as a measure of visual saliency. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 591–600. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Alsam, A., Sharma, P., Wrålsen, A.: Calculating saliency using the dihedral group d4. J. Imaging Sci. Technol. 58(1), 10504:1–10504:12 (2014)

    Article  Google Scholar 

  3. Borji, A., Itti, L.: Exploiting local and global patch rarities for saliency detection. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, pp. 1–8 (2012)

    Google Scholar 

  4. Borji, A., Sihite, D.N., Itti, L.: Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Trans. Image Process. 22(1), 55–69 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: The Proceedings of the Neural Information Processing Systems Conference (NIPS 2005), pp. 155–162, Vancouver, British Columbia, Canada (2005)

    Google Scholar 

  6. Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 13(4:11), 1–20 (2013)

    Google Scholar 

  7. Fawcett, T.: Roc graphs with instance-varying costs. Pattern Recogn. Lett. 27(8), 882–891 (2004)

    Article  Google Scholar 

  8. Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R.: Saliency from hierarchical adaptation through decorrelation and variance normalization. Image Vis. Comput. 30(1), 51–64 (2012)

    Article  Google Scholar 

  9. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Proceedings of Neural Information Processing Systems (NIPS), pp. 545–552. MIT Press (2006)

    Google Scholar 

  10. Hou, X., Zhang, L.: Computer vision and pattern recognition. In: IEEE Conference on Saliency Detection: A Spectral Residual Approach, CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  11. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  12. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: The Proceedings of the 2009 IEEE International Conference on Computer Vision (ICCV), pp. 2106–2113, Kyoto, Japan. IEEE (2009)

    Google Scholar 

  13. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiol. 4, 219–227 (1985)

    Google Scholar 

  14. Schauerte, B., Stiefelhagen, R.: Predicting human gaze using quaternion dct image signature saliency and face detection. In: Proceedings of the IEEE Workshop on the Applications of Computer Vision (WACV), Breckenridge, CO, USA. IEEE 9–11 January 2012

    Google Scholar 

  15. Sharma, P.: Evaluating visual saliency algorithms: past, present and future. J. Imaging Sci. Technol. 59(5), 50501-1 (2015)

    Article  Google Scholar 

  16. Suder, K., Worgotter, F.: The control of low-level information flow in the visual system. Rev. Neurosci. 11, 127–146 (2000)

    Google Scholar 

  17. Tatler, B.W.: The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J. Vis. 7, 1–17 (2007)

    Article  Google Scholar 

  18. Tatler, B.W., Baddeley, R.J., Gilchrist, I.D.: Visual correlates of fixation selection: effects of scale and time. Vis. Res. 45(5), 643–659 (2005)

    Article  Google Scholar 

  19. Tseng, P.-H., Carmi, R., Cameron, I.G., Munoz, D.P., Itti, L.: Quantifying center bias of observers in free viewing of dynamic natural scenes. J. Vis. 9(7), 1–16 (2009)

    Article  Google Scholar 

  20. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: Sun: a bayesian framework for saliency using natural statistics. J. Vis. 8(7), 1–20 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sharma, P., Eiksund, O. (2015). Group Based Asymmetry–A Fast Saliency Algorithm. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics