Skip to main content

Image Annotation Incorporating Low-Rankness, Tag and Visual Correlation and Inhomogeneous Errors

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

Tag-based image retrieval (TBIR) has drawn much attention in recent years due to the explosive amount of digital images and crowdsourcing tags. However, TBIR is still suffering from the incomplete and inaccurate tags provided by users, posing a great challenge for tag-based image management applications. In this work, we propose a novel method for image annotation, incorporating several priors: Low-Rankness, Tag and Visual Correlation and Inhomogeneous Errors. Highly representative CNN feature vectors are adopted to model the tag-visual correlation and narrow the semantic gap. And we extract word vectors for tags to measure similarity between tags in the semantic level, which is more accurate than traditional frequency-based or graph-based methods. We utilize the Accelerated Proximal Gradient (APG) method to solve our model efficiently. Extensive experiments conducted on multiple benchmark datasets demonstrate the effectiveness and robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ntalianis, K., Tsapatsoulis, N., Doulamis, A., Matsatsinis, N.: Automatic annotation of image databases based on implicit crowdsourcing, visual concept modeling and evolution. Multimedia Tools Appl. 69, 397–421 (2014)

    Article  Google Scholar 

  2. Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of semantic classes for image annotation and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 29, 394–410 (2007)

    Article  Google Scholar 

  3. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1075–1088 (2003)

    Article  Google Scholar 

  4. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: Tagprop: discriminative metric learning in nearest neighbor models for image auto-annotation. In: ICCV (2009)

    Google Scholar 

  6. Makadia, A., Pavlovic, V., Kumar, S.: A new baseline for image annotation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 316–329. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Li, X., Snoek, C.G., Worring, M.: Learning social tag relevance by neighbor voting. IEEE Trans. Multimedia 11, 1310–1322 (2009)

    Article  Google Scholar 

  8. Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior and error sparsity. In: ACM MM (2010)

    Google Scholar 

  9. Goldberg, A., Recht, B., Xu, J., Nowak, R., Zhu, X.: Transduction with matrix completion: three birds with one stone. In: NIPS (2010)

    Google Scholar 

  10. Wu, L., Jin, R., Jain, A.K.: Tag completion for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35, 716–727 (2013)

    Article  Google Scholar 

  11. Feng, Z., Feng, S., Jin, R., Jain, A.K.: Image tag completion by noisy matrix recovery. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 424–438. Springer, Heidelberg (2014)

    Google Scholar 

  12. Feng, Z., Jin, R., Jain, A.: Large-scale image annotation by efficient and robust kernel metric learning. In: ICCV (2013)

    Google Scholar 

  13. Niu, Z., Hua, G., Gao, X., Tian, Q.: Semi-supervised relational topic model for weakly annotated image recognition in social media. In: CVPR (2014)

    Google Scholar 

  14. Zhao, R., Grosky, W.I.: Narrowing the semantic gap-improved text-based web document retrieval using visual features. IEEE Trans. Multimedia 4, 189–200 (2002)

    Article  Google Scholar 

  15. Jin, Y., Khan, L., Wang, L., Awad, M.: Image annotations by combining multiple evidence & wordnet. In: ACM MM (2005)

    Google Scholar 

  16. Cilibrasi, R.L., Vitanyi, P.: The google similarity distance. IEEE Trans. Knowl. Data Eng. 19, 370–383 (2007)

    Article  Google Scholar 

  17. Wu, L., Hua, X.S., Yu, N., Ma, W.Y., Li, S.: Flickr distance. In: ACM MM (2008)

    Google Scholar 

  18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  19. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1958–1970 (2008)

    Article  Google Scholar 

  20. Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: CVPR (2006)

    Google Scholar 

  21. Huiskes, M.J., Lew, M.S.: The MIR Flickr retrieval evaluation. In: MIR 2008: Proceedings of the 2008 ACM ICMI (2008)

    Google Scholar 

  22. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 11 (2011)

    Article  MathSciNet  Google Scholar 

  23. Chung, F.R.: Spectral Graph Theory. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  24. Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: UAI (1998)

    Google Scholar 

  25. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optimiz. 6, 615–640 (2010)

    MATH  MathSciNet  Google Scholar 

  26. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. arXiv preprint arXiv:1310.1531 (2013)

  28. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: ACM SIGIR (2003)

    Google Scholar 

  29. Feng, S., Manmatha, R., Lavrenko, V.: Multiple bernoulli relevance models for image and video annotation. In: CVPR (2004)

    Google Scholar 

  30. Sigurbjörnsson, B., Van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: ACM WWW (2008)

    Google Scholar 

  31. Lee, S., De Neve, W., Plataniotis, K.N., Ro, Y.M.: Map-based image tag recommendation using a visual folksonomy. Pattern Recogn. Lett. 31, 976–982 (2010)

    Article  Google Scholar 

  32. Chen, M., Zheng, A., Weinberger, K.: Fast image tagging. In: ICML (2013)

    Google Scholar 

  33. Metzler, D., Manmatha, R.: An inference network approach to image retrieval. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 42–50. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hou, Y. (2015). Image Annotation Incorporating Low-Rankness, Tag and Visual Correlation and Inhomogeneous Errors. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics