Skip to main content

CINAPACT-Splines: A Family of Infinitely Smooth, Accurate and Compactly Supported Splines

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

We introduce CINAPACT-splines, a class of \(C^\infty \), accurate and compactly supported splines. The integer translates of a CINAPACT-spline form a reconstruction space that can be tuned to achieve any order of accuracy. CINAPACT-splines resemble traditional B-splines in that higher orders of accuracy are achieved by successive convolutions with a B-spline of degree zero. Unlike B-splines however, the starting point for CINAPACT-splines is an infinitely smooth and compactly supported bump function that has been properly normalized so that it fulfills the partition of unity criterion. We use our construction to design two CINAPACT-splines, and explore their properties in the context of rendering volumetric data sampled on Cartesian grids. Our results show that CINAPACT-splines, while being infinitely smooth, are capable of providing similar reconstruction accuracy compared to some well-established filters of similar cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hossain, Z., Alim, U.R., Möller, T.: Toward high quality gradient estimation on regular lattices. IEEE Trans. Visual. Comput. Graph. 17, 426–439 (2011)

    Article  Google Scholar 

  2. Runions, A., Samavati, F.: CINPACT-splines: a class of C-infinity curves with compact support. In: Boissonnat, J.-D., Cohen, A., Gibaru, O., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L.L. (eds.) Curves and Surfaces. LNCS, vol. 9213, pp. 384–398. Springer, Heidelberg (2015)

    Google Scholar 

  3. Runions, A., Samavati, F.F.: Partition of unity parametrics: a framework for meta-modeling. Visual Comput. 27, 495–505 (2011)

    Article  Google Scholar 

  4. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  5. Unser, M.: Sampling-50 years after shannon. Proc. IEEE 88, 569–587 (2000)

    Article  Google Scholar 

  6. Nehab, D., Hoppe, H.: A fresh look at generalized sampling. Found. Trends Comput. Graph. Vis. 8, 1–84 (2014)

    Article  Google Scholar 

  7. Strang, W., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973). Prentice-Hall series in automatic computation

    MATH  Google Scholar 

  8. Buhmann, M.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, New York (2003). Cambridge Monographs on Applied and Computational Mathematics

    Book  Google Scholar 

  9. de Boor, C., Höllig, K., Riemenschneider, S.D.: Box splines, vol. 98. Springer, New York (1993)

    Book  MATH  Google Scholar 

  10. Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16, 22–38 (1999)

    Article  Google Scholar 

  11. Schönberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math 4, 45–99 (1946)

    MathSciNet  Google Scholar 

  12. Blu, T., Thévenaz, P., Unser, M.: Moms: maximal-order interpolation of minimal support. IEEE Trans. Image Process. 10, 1069–1080 (2001)

    Article  MATH  Google Scholar 

  13. Blu, T., Unser, M.: Quantitative fourier analysis of approximation techniques. i. interpolators and projectors. IEEE Trans. Signal Process. 47, 2783–2795 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kindlmann, G., Whitaker, R., Tasdizen, T., Möller, T.: Curvature-based transfer functions for direct volume rendering: methods and applications. In: Visualization 2003, pp. 513–520. IEEE Computer Society Press (2003)

    Google Scholar 

  15. Marschner, S.R., Lobb, R.J.: An evaluation of reconstruction filters for volume rendering. In: Visualization 1994, pp. 100–107. IEEE Computer Society Press (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman R. Alim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Akram, B., Alim, U.R., Samavati, F.F. (2015). CINAPACT-Splines: A Family of Infinitely Smooth, Accurate and Compactly Supported Splines. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics