Skip to main content

Learning Discriminative Spectral Bands for Material Classification

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2819 Accesses

Abstract

This paper describes a novel setup to capture images of the spectral response of different materials to improve their classification. The proposed system involves a Liquid Crystal Tunable Filter (LCTF) that, placed in front of the camera, allows the capture of narrow spectral band images for each material from different illumination directions. We analyze the captured spectral images and propose a learning based method to select a subset of bands (or filters), the corresponding images of which can be used without compromising on material classification performance. Results on both binary and multi-class classification tasks are reported in the experimental section.

C. Liu—Currently Ph.D. candidate at Carnegie Mellon University, PA, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jehle, M., Sommer, C., Jähne, B.: Learning of optimal illumination for material classification. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 563–572. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Gu, J., Liu, C.: Discriminative illumination: per-pixel classification of raw materials based on optimal projections of spectral BRDF. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  3. Picón, A., Ghita, O., Bereciartua, A., Echazarra, J., Whelan, P., Iriondo, P.: Real-time hyperspectral processing for automatic nonferrous material sorting. J. Electron. Imaging 21(1), 1–8 (2012)

    Article  Google Scholar 

  4. Bajcsy, P., Groves, P.: Methodology for hyperspectral band selection. Photogram. Eng. Remote Sens. J. 70, 793–802 (2004)

    Article  Google Scholar 

  5. Chang, C.I., Wang, S.: Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 44, 1575–1585 (2006)

    Article  Google Scholar 

  6. Martínez-Usó, A., Pla, F., Sotoca, J., Garcia-Sevilla, P.: Clustering-based hyperspectral band selection using information measures. IEEE Trans. Geosci. Remote Sens. 45, 4158–4171 (2007)

    Article  Google Scholar 

  7. Qian, Y., Yao, F., Jia, S.: Band selection for hyperspectral imagery using affinity propagation. IET Comput. Vision 3, 213–222 (2009)

    Article  Google Scholar 

  8. Kumar, V., Hahn, J., Zoubir, A.: Band selection for hyperspectral images based on self-tuning spectral clustering. In: European Signal Processing Conference (2013)

    Google Scholar 

  9. Fu, Z., Robles-Kelly, A.: Discriminant absorption feature learning for material classification. IEEE Trans. Geosci. Remote Sens. 49, 1536–1556 (2010)

    Article  Google Scholar 

  10. Tominaga, S., Kimachi, A.: Polarization imaging for material classification. Opt. Eng. 47 (2008)

    Google Scholar 

  11. Chen, H., Wolff, L.: Polarization phase-based method for material classification in computer vision. Int. J. Comput. Vision 28, 73–83 (1998)

    Article  Google Scholar 

  12. Wolff, L.: Polarization-based material classification from specular reflection. IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059–1071 (1990)

    Article  Google Scholar 

  13. Salamati, N., Fredembach, C., Süsstrunk, S.: Material classification using color and NIR images. In: IS&T Color Imaging Conference (2009)

    Google Scholar 

  14. Ibrahim, A., Tominaga, S., Horiuchi, T.: Spectral imaging method for material classification and inspection of printed circuit boards. Opt. Eng. 49, 057201–057210 (2010)

    Article  Google Scholar 

  15. Ali, M., Sato, I., Okabe, T., Sato, Y.: Toward efficient acquisition of BRDFs with fewer samples. In: IEEE Asian Conference on Computer Vision (2012)

    Google Scholar 

  16. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Skaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, C., Skaff, S., Martinello, M. (2015). Learning Discriminative Spectral Bands for Material Classification. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics