Abstract
The online multi-instance learning tracking (MIL) algorithm is known for its ability of alleviating tracking drift by training classifiers with positive and negative bag. However, the increased computational complexity results in time consuming due to the lack of consideration of sampling importance when collecting training samples. Additionally, the MIL method, as a 2D feature-based tracking algorithm, performs unsteadily when the object changes poses or rotates seriously. In this paper, a histogram-based feature similarity measurement is employed as a weighting strategy to select positive samples. Benefited from profitable depth information, the tracking algorithm we proposed achieves higher tracking performance. For computational efficiency, a compressive sensing method is adopted to extract features and reduce dimensionality. Experimental results demonstrate that our algorithm is better in robustness, accuracy, efficiency than three state-of-the-art methods on challenging video sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 13 (2006)
Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1631–1643 (2005)
Grabner, H., Bischof, H.: On-line boosting and vision. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 260–267 (2006)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. BMVC 1, 6 (2006)
Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell.29, 261–271 (2007)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell.38, 1619–1632 (2011)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instances learning. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, CVPR 2009, pp. 983–990. IEEE (2009)
Zhang, K., Song, H.: Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn. 46(January), 397–411 (2013)
Zhang, K., Zhang, L., Yang, M.-H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)
Guo, C.: Research on Online Video Object Tracking Algorithm in Presence of Its Zoom and Occlusions. Chongqing University, Chongqing (2014)
Smeaton, A.F., O’Connor, N.E.: An improved spatiogram similarity measure for robust object localization. In: Proceedings of ICASSP, pp. 1067–1072. IEEE, Honolulu (2007)
Candes, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theor. 51(12), 4203–4215 (2005)
Candes, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theor. 52(12), 5406–5425 (2006)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)
Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: CVPR, pp. 1305–1312 (2011)
Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition viasparse representation. PAMI 31, 210–227 (2009)
Liu, L., Fieguth, P.: Texture classic cation from random features. PAMI 34, 574–586 (2012)
Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)
Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: International Conference on Knowledge Discovery and Data Mining, pp. 245–250 (2001)
Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253–263 (2008)
Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66, 671–687 (2003)
Li, P., Hastie, T., Church, K.: Very sparse random projections. In: KDD, pp. 287–296 (2006)
Baraniuk, R.: Compressive sensing. IEEE Sig. Process. Mag. 24(4), 118–121 (2007)
Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Original Article 30(4) (2014)
Wu, Y., Lim, J., Yang, M.-H.: Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhao, M., Luo, H., Tafti, A.P., Lin, Y., He, G. (2015). A Hybrid Real-Time Visual Tracking Using Compressive RGB-D Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)