Skip to main content

Nonlinear Controller of Quadcopters for Agricultural Monitoring

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Abstract

This work presents the construction and control of an autonomous quadcopter for applications of agriculture monitoring. Mainly the navigation system is based on a Field Programmable Gate Array, FPGA, Stabilization Target and a Global Positioning System, GPS, to solve different motion problems of a mobile robot. Also, this paper shows the development of a Human Machine Interface, HMI, between the ground station and the quadcopter. The HMI allows interaction both for simulation and/or experimentally of agricultural monitoring applications through control strategies tele-operated and autonomous flight. Finally, the performance of the proposed controller is shown through real experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly, R., Santibañez, V.: Control de movimiento de Robots Manipuladores, p. 344. Prentice Hall, Madrid (2003)

    Google Scholar 

  2. Brandao, A.S., Sarcinelli-Filho, M., Carelli, R.: An analytical approach to avoid obstacles in mobile robot navigation. Int. J. Adv. Rob. Syst. (2013)

    Google Scholar 

  3. Ollero, A., Maza, I. (eds.): Multiple Heterogeneous Unmanned Aerial Vehicles, Springer Tracts in Advanced Robotics, vol. 37. Springer, Berlin (2007)

    Google Scholar 

  4. Duan, H., Liu, S.: Unmanned air/ground vehicles heterogeneous cooperative techniques: current status and prospects. Sci. China, Technol. Sci. 53(5), 1349–1355 (2010)

    Article  MathSciNet  Google Scholar 

  5. Conte, G., Duranti, S., Merz, T.: Dynamic 3d path following for an autonomous helicopter. In: IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal (2004)

    Google Scholar 

  6. Wang, B., Dong, X., Chen, B.M.: Cascaded control of 3d path following for an unmanned helicopter. In: IEEE International Conference on Cybernetics and Intelligent Systems, pp. 70–75. Singapore (2010)

    Google Scholar 

  7. Enderle, B.: Commercial Applications of UAV’s in Japanese Agriculture. In: AIAA, USA (2012)

    Google Scholar 

  8. Saari, H., Pellikka, I., et al.: Unmanned aerial vehicle (UAV) operated spectral camera system for forest and agriculture applications. In: de Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, Czech Republic (2011)

    Google Scholar 

  9. Ruiz-Garciaa, L., Barreiroa, P., Roblab, J.I.: Performance of ZigBee-based wireless sensor nodes for real-time monitoring of fruit logistics. J. Food Eng. 87(3), 405–415 (2008)

    Article  Google Scholar 

  10. Bender, P.: Wireless sensor/actuator network for model railroad control. In: Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pp. 332–333 (2014)

    Google Scholar 

  11. Ling, T.Y., Wong, L.J., et al.: XBee wireless blood pressure monitoring system with Microsoft Visual Studio. In: 6th International Conference on Intelligent Systems, Modelling and Simulation, pp. 5–9 (2015)

    Google Scholar 

  12. Brandao, A.S., Sarcinelli-Filho, M., Carelli, R.: High-level under-actuated nonlinear control for rotorcraft machines. In: Proceedings of the IEEE International Conference on Mechatronics, IEEE, Vicenza, Italy, February 27–March 1, 2013

    Google Scholar 

  13. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H control structure for a quadrotor helicopter. Automatica 46, 29–39 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Palunko, I., Bogdan, S.: Small helicopter control design based on model reduction and decoupling. J. Intell. Rob. Syst. 54, 201–228 (2009)

    Article  Google Scholar 

  15. Brandao, A.S., Andaluz, V.H., Sarcinelli-Filho, M., Carelli, R.: 3-D path-following with a miniature helicopter using a high-level nonlinear underactuated controller. In: IEEE International Conference on Control and Automation, pp. 434–439 (2011)

    Google Scholar 

  16. Cai, G., Chen, B.M., Dong, X., Lee, T.H.: Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics 21(5), 803–820 (2011)

    Article  Google Scholar 

  17. Universidad de las Fuerzas Armadas ESPE. http://www.espe.edu.ec

Download references

Acknowledgment

The authors thank to the Universidad de las Fuerzas Armadas ESPE–L and to the Universidad Técnica de Ambato, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Andaluz, V.H. et al. (2015). Nonlinear Controller of Quadcopters for Agricultural Monitoring. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics