Skip to main content

Dense Correspondence and Optical Flow Estimation Using Gabor, Schmid and Steerable Descriptors

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

In this paper, the use of three dense descriptors, namely Schmid, Gabor and steerable descriptors, is introduced and investigated for optical flow estimation and dense correspondence of different scenes and compared with the well-known dense SIFT/SIFTFlow. Several examples of optical flow estimation and dense correspondence across scenes with high variations in the intensity levels, difference in the presence of features and different misalignment models (rigid, deformable, homography etc.) are studied and the results are quantitatively/qualitatively compared with dense SIFT/SIFTFlow. The proposed dense descriptors provide comparable or better results than dense SIFT/SIFTFlow which shows the high potential in this area for more thorough investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The first author’s village in central part of Iran.

References

  1. Baghaie, A., Yu, Z.: Curvature-based registration for slice interpolation of medical images. In: Zhang, Y.J., Tavares, J.M.R.S. (eds.) CompIMAGE 2014. LNCS, vol. 8641, pp. 69–80. Springer, Heidelberg (2014)

    Google Scholar 

  2. Baghaie, A., D’souza, R.M., Yu, Z.: Sparse And Low Rank Decomposition Based Batch Image Alignment for Speckle Reduction of retinal OCT Images (2014). arXiv preprint arXiv:1411.4033

  3. Baghaie, A., Yu, Z., D’souza, R.M.: State-of-the-art in retinal optical coherence tomography image analysis. Quant. Imaging Med. Surg. 5(4), 603–617 (2015). doi:10.3978/j.issn.2223-4292.2015.04.08

    Google Scholar 

  4. Baghaie, A., D’souza, R.M., Yu, Z.: Application of Independent Component Analysis Techniques in Speckle Noise Reduction of Single-Shot Retinal OCT Images (2015). arXiv preprint arXiv:1502.05742

  5. Lillesand, T., Kiefer, R.W.: Remote Sensing and Image Interpretation. Wiley, New York (2014)

    Google Scholar 

  6. Li, Q., Wang, G., Liu, J., Chen, S.: Robust scale-invariant feature matching for remote sensing image registration. IEEE Geosci. Remote Sens. Lett. 6(2), 287–291 (2009)

    Article  Google Scholar 

  7. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  8. Baghaie, A., Yu, Z., D’souza, R.M.: Fast mesh-based medical image registration. In: Bebis, G., et al. (eds.) ISVC 2014, Part II. LNCS, vol. 8888, pp. 1–10. Springer, Heidelberg (2014)

    Google Scholar 

  9. Tafti, A.P., Hassannia, H., Yu, Z.: siftservice.com-Turning a Computer Vision algorithm into a World Wide Web Service (2015). arXiv preprint arXiv:1504.02840

  10. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  11. Tafti, A.P., Kirkpatrick, A.B., Alavi, Z., Owen, H.A., Zeyun, Y.: Recent advances in 3D SEM surface reconstruction. Micron 78, 54–66 (2015)

    Article  Google Scholar 

  12. Tafti, A.P., Kirkpatrick, A.B., Owen, H.A., Yu, Z.: 3D microscopy vision using multiple view geometry and differential evolutionary approaches. In: Bebis, G., et al. (eds.) ISVC 2014, Part II. LNCS, vol. 8888, pp. 141–152. Springer, Heidelberg (2014)

    Google Scholar 

  13. Tafti, A.P., Baghaie, A., Kirkpatrick, A.B., Owen, H.A., D’Souza, R.M., Yu, Z.: A Comparative study on the application of SIFT, SURF, BRIEF and ORB for 3D surface reconstruction of electron microscopy images. In: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization (2016)

    Google Scholar 

  14. Johnson, A.E., Hebert, M.: Recognizing objects by matching oriented points. In: 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings. IEEE (1997)

    Google Scholar 

  15. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Wang, H., Klser, A., Schmid, C., Liu, C.-L.: Action recognition by dense trajectories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2011)

    Google Scholar 

  17. Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)

    Article  Google Scholar 

  18. Sangineto, E.: Pose and expression independent facial landmark localization using dense-SURF and the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 624–638 (2013)

    Article  Google Scholar 

  19. Dalal, N.,Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1. IEEE (2005)

    Google Scholar 

  20. Gabor, D.: Theory of communication. part 1: the analysis of information. J. Inst. Electr. Eng. III. Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  21. Movellan, J.R.: Tutorial on Gabor filters. Open Source Document (2002)

    Google Scholar 

  22. Ilonen, J., Kmrinen, J.-K., Kllvinen, H.: Efficient computation of Gabor features. Lappeenranta University of Technology, Lappeenranta (2005)

    Google Scholar 

  23. Schmid, C.: Constructing models for content-based image retrieval. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2. IEEE (2001)

    Google Scholar 

  24. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 9, 891–906 (1991)

    Article  Google Scholar 

  25. Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1007–1019 (2004)

    Article  Google Scholar 

  26. Aguet, F., Jacob, M., Unser, M.: Three-dimensional feature detection using optimal steerable filters. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 2. IEEE (2005)

    Google Scholar 

  27. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Intern. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  28. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)

    Article  Google Scholar 

  30. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (2014)

    Google Scholar 

  31. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Intern. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  32. Malin, M.C., Edgett, K.S., Carr, M.H., Danielson, G.E., Davies, M.E., Hartmann, W.K., Ingersoll, A.P., James, P.B., Masursky, H., McEwen, A.S., Soderblom, L.A., Thomas, P., Veverka, J., Caplinger, M.A., Ravine, M.A., Soulanille, T.A., Warren, J.L.: New Gully Deposit in a Crater in Terra Sirenum: Evidence That Water Flowed on Mars in This Decade? In: NASA’s Planetary Photojournal, MOC2-1618, 6 December 2006. http://photojournal.jpl.nasa.gov/

  33. Yang, G., Stewart, C.V., Sofka, M., Tsai, C.-L.: Registration of challenging image pairs: initialization, estimation, and decision. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadreza Baghaie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Baghaie, A., D’Souza, R.M., Yu, Z. (2015). Dense Correspondence and Optical Flow Estimation Using Gabor, Schmid and Steerable Descriptors. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics