Skip to main content

Guided Structure-Aligned Segmentation of Volumetric Data

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9474)


Segmentation of volumetric images is considered a time and resource intensive bottleneck in scientific endeavors. Automatic methods are becoming more reliable, but many data sets still require manual intervention. Key difficulties include navigating the 3D image, determining where to place marks, and maintaining consistency between marks and segmentations. Clinical practice often requires segmenting many different instances of a specific structure. In this research we leverage the similarity of a repeated segmentation task to address these difficulties and reduce the cognitive load for segmenting on non-traditional planes. We propose the idea of guided contouring protocols that provide guidance in the form of an automatic navigation path to arbitrary cross sections, example marks from similar data sets, and text instructions. We present a user study that shows the usability of this system with non-expert users in terms of segmentation accuracy, consistency, and efficiency.


  • Text Instructions
  • Ferret Brain
  • Contour Drawing
  • Expert Segmentation
  • Contour Parallel

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. de Bruin, P., Dercksen, V., Post, F., Vossepoel, A., Streekstra, G.: Interactive 3D segmentation using connected orthogonal contours. Comput. Biol. Med. 35, 329–346 (2005)

    CrossRef  Google Scholar 

  2. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17, 167–174 (1998)

    CrossRef  Google Scholar 

  3. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    CrossRef  Google Scholar 

  4. Foppiano, F., Fiorino, C., Frezza, G., Greco, C., Valdagni, R.: The impact of contouring uncertainty on rectal 3D dose-volume data: results of a dummy run in a multicenter trial. Int. J. Radiat. Oncol. Biol. Phys. 57(2), 573–579 (2003)

    CrossRef  Google Scholar 

  5. Hamarneh, G., Yang, J., McIntosh, C., Langille, M.: 3d live-wire-based semi-automatic segmentation of medical images. SPIE Med. Imaging 5747, 1597–1603 (2005)

    Google Scholar 

  6. Heckel, F., Konrad, O., Hahn, H.K., Peitgen, H.O.: Interactive 3D medical image segmentation with energy-minimizing implicit functions. Comput. Graph. Spec. Issue Vis. Comput. Biol. Med. 35(2), 275–287 (2011)

    Google Scholar 

  7. Khan, A., Mordatch, I., Fitzmaurice, G., Matejka, J., Kurtenbach, G.: Viewcube: a 3d orientation indicator and controller. In: Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games, I3D 2008, pp. 17–25. ACM (2008)

    Google Scholar 

  8. Macedo, I., Gois, J., Velho, L.: Hermite interpolation of implicit surfaces with radial basis functions. In: 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), pp. 1–8, October 2009

    Google Scholar 

  9. Prassni, J.S., Ropinski, T., Hinrichs, K.: Uncertainty-aware guided volume segmentation. IEEE Trans. Vis. Comput. Graph. 16(6), 1358–1365 (2010)

    CrossRef  Google Scholar 

  10. Sowell, R., Liu, L., Ju, T., Grimm, C., Abraham, C., Gokhroo, G., Low, D.: VolumeViewer: an interactive tool for fitting surfaces to volume data. In: SBIM 2009: Proceedings of the 6th Eurographics Symposium on Sketch-Based Interfaces and Modeling, pp. 141–148. ACM (2009)

    Google Scholar 

  11. Sowell, R.T.: Modeling Surfaces from Volume Data Using Nonparallel Contours. Ph.D. thesis, Washington Univ. in St. Louis (2012)

    Google Scholar 

  12. Stoakley, R., Conway, M.J., Pausch, R.: Virtual reality on a wim: interactive worlds in miniature. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1995, pp. 265–272. ACM (1995)

    Google Scholar 

  13. Top, A., Hamarneh, G., Abugharbieh, R.: Active learning for interactive 3d image segmentation. In: Proceedings of the 14th International Conference on Medical Image Computing and Computer-assisted Intervention - Part III, pp. 603–610 (2011)

    Google Scholar 

  14. Top, A., Hamarneh, G., Abugharbieh, R.: Spotlight: automated confidence-based user guidance for increasing efficiency in interactive 3D image segmentation. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 204–213. Springer, Heidelberg (2011)

    Google Scholar 

  15. Weiss, E., Richter, S., Krauss, T., Metzelthin, S.I., Hille, A., Pradier, O., Siekmeyer, B., Vorwerk, H., Hess, C.F.: Conformal radiotherapy planning of cervix carcinoma: differences in the delineation of the clinical target volume. A comparison between gynaecologic and radiation oncologists. Radiother Oncol. 67(1), 87–95 (2003)

    CrossRef  Google Scholar 

  16. Wirjadi, O.: Survey of 3D image segmentation methods. Technical report 123, Fraunhofer ITWM (2007)

    Google Scholar 

Download references


The authors would like to thank Dr. Daniel Low, formerly of the Washington University School of Medicine in St. Louis for the liver data sets, Dr. Sandra Rugonyi of Oregon Health & Science University for the aorta data sets, and Dr. Philip Bayly of Washington University in St. Louis for the ferret brain data sets.

This work was supported by the National Science Foundation under grants DEB-1053554 and IIS-1302142.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michelle Holloway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Holloway, M. et al. (2015). Guided Structure-Aligned Segmentation of Volumetric Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)