Skip to main content

Inverse Problems

  • Chapter
  • First Online:

Abstract

Inverse problems can best be characterized through their counterparts, namely direct or forward problems. A classical forward problem is to find a unique effect of a given cause using an appropriate physical or mathematical model. Forward problems are usually well-posed, i.e., they have a unique solution which is insensitive to small changes of the initial values. Inverse problems are the opposite to forward problems, meaning that one is given the effect and the task is to recover the cause. Inverse problems do not necessarily have unique and stable solutions, i.e., they are often ill-posed in the sense of Hadamard [7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To keep the notation slim, we omitted all the units in this example.

  2. 2.

    The area under study is a managed boreal forest in Eastern Finland (lat. 6231′N, lon. 3010′E). ALS data were collected on June 26, 2009 using an Optech ALTM Gemini laser scanning system from approximately 720 m above ground level, with a field of view of 26. A more detailed description is given by Packalén et al. in [14].

References

  1. Arridge, S.R.: Optical tomography in medical imaging. Inverse Prob. 15, R41–R93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arridge, S.R., Schotland, J.C.: Optical tomography: forward and inverse problems. Inverse Prob. 25, 123010 (59pp) (2009)

    Google Scholar 

  3. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  4. Boas, D.A., Brooks, D.H., Miller, E.L., DiMarzio, C.A., Kilmer, M., Gaudette, R.J., Zhang, Q.: Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag. 18 (6), 57–75 (2001)

    Article  Google Scholar 

  5. Gaveau, D.L.A., Hill, R.A.: Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Can. J. Remote Sens. 29 (5), 650–657 (2003)

    Article  Google Scholar 

  6. Gibson, A.P., Hebden, J.C., Arridge, S.R.: Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005)

    Article  Google Scholar 

  7. Groetsch, C.W.: Inverse Problems in the Mathematical Sciences. Vieweg, Braunschweig/Wiesbaden (1993)

    Book  MATH  Google Scholar 

  8. Hyyppä, J., Kelle, O., Lehikoinen, M., Inkinen, M.: A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 39 (5), 969–975 (2001)

    Article  Google Scholar 

  9. Ishimaru, A.: Wave Propagation and Scattering in Random Media, vol. 1. Academic, New York (1978)

    MATH  Google Scholar 

  10. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Applied Mathematical Sciences. Springer, New York (2005)

    MATH  Google Scholar 

  11. Lähivaara, T., Seppänen, A., Kaipio, J.P., Vauhkonen, J., Korhonen, L., Tokola, T., Maltamo, M.: Bayesian approach to tree detection based on airborne laser scanning data. IEEE Trans. Geosci. Remote Sens. 52 (5), 2690–2699 (2014). doi:10.1109/TGRS.2013.2264548

    Article  Google Scholar 

  12. Lytle, R.J., Dines, K.A.: Iterative tray tracing between boreholes for underground image reconstruction. IEEE Trans. Geosci. Remote Sens. 18 (3), 234–240 (1980)

    Article  Google Scholar 

  13. Mueller, J.L., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications. Computational Science and Engineering. SIAM, Philadelphia (2012)

    Book  MATH  Google Scholar 

  14. Packalén, J., Vauhkonen, J., Kallio, E., Peuhkurinen, J., Pitkänen, J., Pippuri, I., Strunk, J., Maltamo, M.: Predicting the spatial pattern of trees with airborne laser scanning. Int. J. Remote Sens. 34 (14), 5154–5165 (2013)

    Article  Google Scholar 

  15. Tarantola, A.: Inverse Problems Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2004)

    MATH  Google Scholar 

  16. Tarvainen, T., Kolehmainen, V., Kaipio, J.P., Arridge, S.R.: Corrections to linear methods for diffuse optical tomography using approximation error modelling. Biomed. Opt. Express 1, 209–222 (2010)

    Article  Google Scholar 

  17. Vauhkonen, M.: Electrical Impedance Tomography and Prior Information. PhD thesis, Kuopio University Publications C (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Vauhkonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vauhkonen, M., Tarvainen, T., Lähivaara, T. (2016). Inverse Problems. In: Pohjolainen, S. (eds) Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-27836-0_12

Download citation

Publish with us

Policies and ethics