Abstract Interpretation of PEPA Models

  • Stephen Gilmore
  • Jane HillstonEmail author
  • Natalia Zoń
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9560)


This paper relates the fluid-flow semantics of the stochastic process algebra PEPA (Performance Evaluation Process Algebra) to the static analysis technique of abstract interpretation. The explanation in the paper is illustrated through the example of a distributed denial of service (DDoS) attack which is being launched against a server. DDoS attacks are mounted by a large population of attackers, who are coordinating and working together in attacking a specific server. The scale of the attack is crucial to its success, but the resulting large number of states in the system makes it difficult to model and analyse using the conventional discrete-state interpretation of PEPA.


Abstract Interpretation Label Transition System Continuous Time Markov Chain Service Attack Scalable Differential Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the EU project QUANTICOL, 600708. The authors thank Mirco Tribastone for useful discussions.


  1. 1.
    Yüksel, E., Nielson, H.R., Nielson, F.: Key update assistant for resource-constrained networks. In: 2012 IEEE Symposium on Computers and Communications, ISCC 2012, Cappadocia, 1–4 July 2012, pp. 75–81. IEEE (2012)Google Scholar
  2. 2.
    Nielson, F., Nielson, H.R., Zeng, K.: Stochastic model checking of the stochastic quality calculus. In: De Nicola, R., Hennicker, R. (eds.) Wirsing Festschrift. LNCS, vol. 8950, pp. 522–537. Springer, Heidelberg (2015) Google Scholar
  3. 3.
    Hillston, J.: The benefits of sometimes not being discrete. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 7–22. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, New York (1996)CrossRefGoogle Scholar
  5. 5.
    Yang, F.: Static Analysis of Stochastic Process Algebras. MSc dissertation (2007)Google Scholar
  6. 6.
    Cousot, P.: Abstract interpretation based formal methods and future challenges. In: Wilhelm, R. (ed.) Informatics: 10 Years Back, 10 Years Ahead. LNCS, vol. 2000, p. 138. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  7. 7.
    Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second International Conference on the Quantitative Evaluation of Systems, pp. 33–43. IEEE Computer Society Press, Torino, September 2005Google Scholar
  8. 8.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  9. 9.
    Vigo, R., Nielson, F., Nielson, H.R.: Broadcast, denial-of-service, and secure communication. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 412–427. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Wang, S., Nielson, F., Nielson, H.R.: A framework for hybrid systems with denial-of-service security attack. CoRR, abs/1403.6367 (2014)Google Scholar
  11. 11.
    Wang, S., Nielson, F., Nielson, H.R.: Denial-of-service security attack in the continuous-time world. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 149–165. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  12. 12.
    Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Zeng, K., Nielson, F., Nielson, H.R.: The stochastic quality calculus. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 179–193. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  14. 14.
    Buchholtz, M., Gilmore, S., Hillston, J., Nielson, F.: Securing statically-verified communications protocols against timing attacks. In: Bradley, J., Knottenbelt, W. (eds.) Proceedings of the First International Workshop on Practical Applications of Stochastic Modelling, pp. 61–79. England, London (2004)Google Scholar
  15. 15.
    Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic process algebras. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  16. 16.
    Gilmore, S., Tribastone, M.: Evaluating the scalability of a Web service-based distributed e-learning and course management system. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  17. 17.
    Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating Web services for scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 204–221. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Cappello, I., Clark, A., Gilmore, S., Latella, D., Loreti, M., Quaglia, P., Schivo, S.: Quantitative analysis of services. In: Wirsing, M., Hölzl, M. (eds.) SENSORIA. LNCS, vol. 6582, pp. 522–540. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models from UML activity diagrams annotated with the MARTE profile. In: Proceedings of the 7th International Workshop on Software and Performance (WOSP2008), pp. 67–78. ACM Press, Princeton (2008)Google Scholar
  20. 20.
    Tribastone, M., Gilmore, S.: Automatic translation of UML sequence diagrams into PEPA models. In: 5th International Conference on the Quantitative Evaluation of Systems (QEST 2008), pp. 205–214. IEEE Computer Society Press, St Malo (2008)Google Scholar
  21. 21.
    Zhao, Y., Thomas, N.: Approximate solution of a PEPA model of a key distribution centre. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol. 5119, pp. 44–57. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  22. 22.
    Bradley, J.T., Gilmore, S., Hillston, J.: Analysing distributed Internet worm attacks using continuous state-space approximation of process algebra models. J. Comput. Syst. Sci. 74(6), 1013–1032 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Duguid, A.: Coping with the parallelism of BitTorrent: conversion of PEPA to ODEs in dealing with state space explosion. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 156–170. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  24. 24.
    Hillston, J.: Fluid flow approximation of PEPA models. In: Second International Conference on the Quantitative Evaluaiton of Systems (QEST 2005), 19–22 September 2005, pp. 33–43. IEEE Computer Society, Torino (2005)Google Scholar
  25. 25.
    Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump markov processes. J. Appl. Probab. 7, 49–58 (1970)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)CrossRefGoogle Scholar
  27. 27.
    Tribastone, M., Ding, J., Gilmore, S., Hillston, J.: Fluid rewards for a stochastic process algebra. IEEE Trans. Softw. Eng. 38(4), 861–874 (2012)CrossRefGoogle Scholar
  28. 28.
    Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA models. IEEE Trans. Softw. Eng. 27(5), 449–464 (2001)CrossRefGoogle Scholar
  29. 29.
    Tribastone, M., Duguid, A., Gilmore, S.: The PEPA eclipse plug-in. Perform. Eval. Rev. 36(4), 28–33 (2009)CrossRefGoogle Scholar
  30. 30.
    Williams, C.D., Hillston, J.: Automated capacity planning for PEPA models. In: Horváth, A., Wolter, K. (eds.) EPEW 2014. LNCS, vol. 8721, pp. 209–223. Springer, Heidelberg (2014) Google Scholar
  31. 31.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization; an overview. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory for Foundations of Computer ScienceUniversity of EdinburghEdinburghScotland

Personalised recommendations