Probabilistic Abstract Interpretation: From Trace Semantics to DTMC’s and Linear Regression

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9560)


In order to perform probabilistic program analysis we need to consider probabilistic languages or languages with a probabilistic semantics, as well as a corresponding framework for the analysis which is able to accommodate probabilistic properties and properties of probabilistic computations. To this purpose we investigate the relationship between three different types of probabilistic semantics for a core imperative language, namely Kozen’s Fixpoint Semantics, our Linear Operator Semantics and probabilistic versions of Maximal Trace Semantics. We also discuss the relationship between Probabilistic Abstract Interpretation (PAI) and statistical or linear regression analysis. While classical Abstract Interpretation, based on Galois connection, allows only for worst-case analyses, the use of the Moore-Penrose pseudo inverse in PAI opens the possibility of exploiting statistical and noisy observations in order to analyse and identify various system properties.


  1. 1.
    Jones, N.D., Nielson, F.: Abstract interpretation: a semantics-based tool for program analysis. In: Handbook of Logic in Computer Science, pp. 527–636. Clarendon Press, Oxford (1985)Google Scholar
  2. 2.
    Nielson, F.: Strictness analysis and denotational abstract interpretation. Inf. Comput. 76(1), 29–92 (1988)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Nielson, F., Nielson, H.R.: Infinitary control flow analysis: a collecting semantics for closure analysis. In: Proceedings of POPL 1997, pp. 332–345 (1997)Google Scholar
  4. 4.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)MATHCrossRefGoogle Scholar
  5. 5.
    Di Pierro, A., Wiklicky, H.: Concurrent constraint programming: towards probabilistic abstract interpretation. In: Proceedings of PPDP 2000, pp. 127–138 (2000)Google Scholar
  6. 6.
    Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations. In: Lau, K.-K. (ed.) LOPSTR 2000. LNCS, vol. 2042, pp. 147–164. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  7. 7.
    Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. Pitman - Dover, London (1979) MATHGoogle Scholar
  9. 9.
    Deutsch, F.: Best Approximation in Inner-Product Spaces. Springer, New York (2001) MATHCrossRefGoogle Scholar
  10. 10.
    Ben-Israel, A., Greville, T.N.E.: Gereralized Inverses - Theory and Applications. CMS Books in Mathematics, 2nd edn. Springer, New York (2003) Google Scholar
  11. 11.
    Albert, A.: Regression and the Moore-Penrose Pseudoinverse. Mathematics in Science and Engineering. Elsevier, New York (1972) MATHGoogle Scholar
  12. 12.
    Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–350 (1981)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Di Pierro, A., Sotin, P., Wiklicky, H.: Relational analysis and precision via probabilistic abstract interpretation. In: Proceedings of QAPL 2008. vol. 220(3) of ENTCS, pp. 23–42. Elsevier (2008)Google Scholar
  14. 14.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic semantics and program analysis. Formal Methods for Quantitative Aspects of Programming Languages. LNCS, vol. 6154, pp. 1–42. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic lambda calculus and quantitative program analysis. J. Logic Comput. 15(2), 159–179 (2005)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability distributions. ACM SIGPLAN Notices 37(1), 154–165 (2002)CrossRefGoogle Scholar
  17. 17.
    Pfeffer, A.: Practical Probabilistic Programming. Manning, Shelter Island (2015) Google Scholar
  18. 18.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic linda-based coordination languages. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS, vol. 3657, pp. 120–140. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  19. 19.
    Priami, C.: Stochastic \({\pi }\)-calculus. Comput. J. 38(7), 578–589 (1995)CrossRefGoogle Scholar
  20. 20.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996) CrossRefGoogle Scholar
  21. 21.
    Di Pierro, A., Hankin, C., Wiklicky, H.: A systematic approach to probabilistic pointer analysis. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 335–350. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  22. 22.
    Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: Proceedings of LICS 1989, pp. 186–195. IEEE (1989)Google Scholar
  23. 23.
    Jones, C.: Probabilistic non-determinism. Ph.D. thesis, University of Edinburgh (1989)Google Scholar
  24. 24.
    Jung, A., Tix, R.: The troublesome probabilistic powerdomain. ENTCS 13, 70–91 (1998)MathSciNetGoogle Scholar
  25. 25.
    Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM Trans. Program. Lang. Syst. 18(3), 325–353 (1996)CrossRefGoogle Scholar
  26. 26.
    Gretz, F., Katoen, J.P., McIver, A.: Operational versus weakest pre-expectation semantics for the probabilistic guarded command language. Perform. Eval. 73, 110–132 (2014)CrossRefGoogle Scholar
  27. 27.
    Park, S., Pfenning, F., Thrun, S.: A probabilistic language based upon sampling functions. In: Proceedings of POPL 2005, 171–182 (2005)Google Scholar
  28. 28.
    Di Pierro, A., Wiklicky, H.: Semantics of probabilistic programs: a weak limit approach. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 241–256. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  29. 29.
    Lax, P.D.: Functional Analysis. Pure and Applied Mathematics. Wiley, New York (2002)Google Scholar
  30. 30.
    Kubrusly, C.S.: The Elements of Operator Theory, 2nd edn. Birkhäuser, Boston (2011) MATHCrossRefGoogle Scholar
  31. 31.
    Greub, W.H.: Linear Algebra, vol. 97. Springer, Heidelberg (1967) MATHCrossRefGoogle Scholar
  32. 32.
    Goebel, K., Kirk, W.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990) MATHCrossRefGoogle Scholar
  33. 33.
    Roman, S.: Advanced Linear Algebra. Graduate Texts in Mathematics, vol. 135, 2nd edn. Springer, New York (2005) MATHGoogle Scholar
  34. 34.
    Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras: Elementary Theory. AMS (1997). Reprint from Academic Press edition 1983Google Scholar
  35. 35.
    Cousot, P., Cousot, R.: Systematic design of program transformation frameworks by abstract interpretation. In: Proceedings POPL 2002, pp. 178–190 (2002)Google Scholar
  36. 36.
    Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theoret. Comput. Sci. 277(1–2), 47–103 (2002)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 322–339. Springer, Heidelberg (2000)Google Scholar
  38. 38.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Abstract interpretation for worst and average case analysis. In: Reps, T., Sagiv, M., Bauer, J. (eds.) Wilhelm Festschrift. LNCS, vol. 4444, pp. 160–174. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  39. 39.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996) Google Scholar
  40. 40.
    Eaton, J.W., Bateman, D., Hauberg, S.: GNU Octave - A High-Level Interactive Language For Numerical Computations, 3rd edn. Cambridge University Press, New York (2007) Google Scholar
  41. 41.
    Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. Chapman & Hall/CRC Applied Mathematics & Nonlinear Science. CRC Press, Boca Raton (2004) MATHCrossRefGoogle Scholar
  42. 42.
    Verhaegen, M., Verdult, V.: Filtering and System Identification: A Least Squares Approach. Cambridge University Press, New York (2007) CrossRefGoogle Scholar
  43. 43.
    Rao, C.R., Toutenburg, H., Shalabh, Heumann, C.: Linear Models and Generalizations: Least Squares and Alternatives. Springer Series in Statistics. Springer, Heidelberg (2008) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di VeronaVeronaItaly
  2. 2.Department of ComputingImperial College LondonLondonUK

Personalised recommendations