Skip to main content

Variational Method and Its Application to Modelling of Mantle Plume Evolution

  • Chapter
  • First Online:
Data-Driven Numerical Modelling in Geodynamics: Methods and Applications

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 584 Accesses

Abstract

In this chapter, we present a variational (VAR) method for assimilation of data related to models of thermal convective flow. This approach is based on a search for model parameters (e.g., mantle temperature and flow velocity in the past) by minimizing the differences between present-day observations of the relevant physical parameters (e.g., temperature derived from seismic tomography, geodetic measurements) and those predicted by forward models for an initial guess temperature. To demonstrate the applicability of this method, we present a numerical model of the evolution of mantle plumes and show that the initial shape of the plumes can be accurately reconstructed. Finally we discuss some challenges in the VAR data assimilation including a smoothness of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers M, Christensen UR (1996) The excess temperature of plumes rising from the core-mantle boundary. Geophys Res Lett 23:3567–3570

    Article  Google Scholar 

  • Alekseev AK, Navon IM (2001) The analysis of an ill-posed problem using multiscale resolution and second order adjoint techniques. Comput Meth Appl Mech Eng 190:1937–1953

    Article  Google Scholar 

  • Boussinesq J (1903) Theorie Analytique de la Chaleur, vol 2. Gauthier-Villars, Paris

    Google Scholar 

  • Bunge H-P, Hagelberg CR, Travis BJ (2003) Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys J Int 152:280–301

    Article  Google Scholar 

  • Busse FH, Christensen U, Clever R, Cserepes L, Gable C, Giannandrea E, Guillou L, Houseman G, Nataf H-C, Ogawa M, Parmentier M, Sotin C, Travis B (1993) 3D convection at infinite Prandtl number in Cartesian geometry – a benchmark comparison. Geophys Astrophys Fluid Dyn 75:39–59

    Article  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, Oxford

    Google Scholar 

  • Chopelas A, Boehler R (1989) Thermal expansion measurements at very high pressure, systematics and a case for a chemically homogeneous mantle. Geophys Res Lett 16:1347–1350

    Article  Google Scholar 

  • Davaille A, Vatteville J (2005) On the transient nature of mantle plumes. Geophys Res Lett 32:L14309. doi:10.1029/2005GL023029

    Google Scholar 

  • Forte AM, Mitrovica JX (1997) A resonance in the Earth’s obliquity and precession over the past 20 Myr driven by mantle convection. Nature 390:676–680

    Article  Google Scholar 

  • Hansen U, Yuen DA, Kroening SE (1990) Transition to hard turbulence in thermal convection at infinite Prandtl number. Phys Fluids A2(12):2157–2163

    Article  Google Scholar 

  • Hansen U, Yuen DA, Kroening SE (1991) Effects of depth-dependent thermal expansivity on mantle circulations and lateral thermal anomalies. Geophys Res Lett 18:1261–1264

    Article  Google Scholar 

  • Harder H, Christensen UR (1996) A one-plume model of Martian mantle convection. Nature 380:507–509

    Article  Google Scholar 

  • Hofmeister AM (1999) Mantle values of thermal conductivity and the geotherm from photon lifetimes. Science 283:1699–1706

    Article  Google Scholar 

  • Honda S, Balachandar S, Yuen DA, Reuteler D (1993a) Three-dimensional mantle dynamics with an endothermic phase transition. Geophys Res Lett 20:221–224

    Article  Google Scholar 

  • Honda S, Yuen DA, Balachandar S, Reuteler D (1993b) Three-dimensional instabilities of mantle convection with multiple phase transitions. Science 259:1308–1311

    Article  Google Scholar 

  • Howard LN (1966) Convection at high Rayleigh number. In: Goertler H, Sorger P (eds) Applied mechanics. In: Proceedings of the 11th international congress of applied mechanics, Munich, Germany 1964. Springer, New York, pp 1109–1115

    Google Scholar 

  • Ismail-Zadeh A, Tackley P (2010) Computational methods for geodynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ismail-Zadeh AT, Korotkii AI, Tsepelev IA (2003) Numerical approach to solving problems of slow viscous flow backwards in time. In: Bathe KJ (ed) Computational fluid and solid mechanics. Elsevier Science, Amsterdam, pp 938–941

    Google Scholar 

  • Ismail-Zadeh A, Schubert G, Tsepelev I, Korotkii A (2004) Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Phys Earth Planet Inter 145:99–114

    Article  Google Scholar 

  • Ismail-Zadeh A, Schubert G, Tsepelev I, Korotkii A (2006) Three-dimensional forward and backward numerical modeling of mantle plume evolution: effects of thermal diffusion. J Geophys Res 111:B06401. doi:10.1029/2005JB003782

    Article  Google Scholar 

  • Karato S (2010) Rheology of the Earth’s mantle: a historical review. Gondwana Res 18:17–45

    Article  Google Scholar 

  • Korotkii AI, Tsepelev IA (2003) Solution of a retrospective inverse problem for one nonlinear evolutionary model. Proc Steklov Inst Math 243(Suppl 2):80–94

    Google Scholar 

  • Lattes R, Lions JL (1969) The method of quasi-reversibility: applications to partial differential equations. Elsevier, New York

    Google Scholar 

  • Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45:503–528

    Article  Google Scholar 

  • Liu M, Yuen DA, Zhao W, Honda S (1991) Development of diapiric structures in the upper mantle due to phase transitions. Science 252:1836–1839

    Article  Google Scholar 

  • Malevsky AV, Yuen DA (1993) Plume structures in the hard-turbulent regime of three-dimensional infinite Prandtl number convection. Geophys Res Lett 20:383–386

    Article  Google Scholar 

  • Mitrovica JX (1996) Haskell (1935) revisited. J Geophys Res 101:555–569

    Article  Google Scholar 

  • Mitrovica JX, Forte AM (2004) A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet Sci Lett 225:177–189

    Article  Google Scholar 

  • Moore WB, Schubert G, Tackley P (1998) Three-dimensional simulations of plume–lithosphere interaction at the Hawaiian Swell. Science 279:1008–1011

    Article  Google Scholar 

  • Morgan WJ (1972) Plate motions and deep convection. Geol Soc Am Mem 132:7–22

    Article  Google Scholar 

  • Olson P, Singer H (1985) Creeping plumes. J Fluid Mech 158:511–531

    Article  Google Scholar 

  • Ribe NM, Christensen U (1994) Three-dimensional modeling of plume-lithosphere interaction. J Geophys Res 99:669–682

    Article  Google Scholar 

  • Ricard Y, Fleitout L, Froidevaux C (1984) Geoid heights and lithospheric stresses for a dynamic arth. Ann Geophys 2:267–286

    Google Scholar 

  • Richards MA, Duncan RA, Courtillot V (1989) Flood basalts and hot spot tracks: plume heads and tails. Science 246:103–107

    Article  Google Scholar 

  • Samarskii AA, Vabishchevich PN (2007) Numerical methods for solving inverse problems of mathematical physics. De Gruyter, Berlin

    Book  Google Scholar 

  • Samarskii AA, Vabishchevich PN, Vasiliev VI (1997) Iterative solution of a retrospective inverse problem of heat conduction. Math Modeling 9:119–127

    Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sleep NH (1990) Hotspots and mantle plumes: some phenomenology. J Geophys Res 95:6715–6736

    Article  Google Scholar 

  • Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Dokl Akad Nauk SSSR 151:501–504 (Engl. transl.: Soviet Math Dokl 4:1035–1038)

    Google Scholar 

  • Tikhonov AN, Samarskii AA (1990) Equations of mathematical physics. Dover Publications, New York

    Google Scholar 

  • Trompert RA, Hansen U (1998) On the Rayleigh number dependence of convection with a strongly temperature-dependent viscosity. Phys Fluids 10:351–360

    Article  Google Scholar 

  • Tsepelev IA (2011) Iterative algorithm for solving the retrospective problem of thermal convection in a viscous fluid. Fluid Dyn 46:835–842

    Article  Google Scholar 

  • Vasiliev FP (2002) Methody optimizatsii. Factorial Press, Moscow (in Russian)

    Google Scholar 

  • Zhong S (2005) Dynamics of thermal plumes in three-dimensional isoviscous thermal convection. Geophys J Int 162:289–300

    Article  Google Scholar 

  • Zou X, Navon IM, Berger M, Phua KH, Schlick T, Le Dimet FX (1993) Numerical experience with limited-memory quasi-Newton and truncated Newton methods. SIAM J Optimi 3(3):582–608

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Ismail-Zadeh, A., Korotkii, A., Tsepelev, I. (2016). Variational Method and Its Application to Modelling of Mantle Plume Evolution. In: Data-Driven Numerical Modelling in Geodynamics: Methods and Applications. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-27801-8_3

Download citation

Publish with us

Policies and ethics