Skip to main content

Platelets and Lipoxygenases

  • Chapter
  • First Online:
Lipoxygenases in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 608 Accesses

Abstract

Platelets are a cellular component of blood whose primary function is to maintain hemostasis in response to vessel insult. Beyond their traditional role in hemostasis, platelets are also known to regulate inflammation. These small anucleated cells express a single lipoxygenase, platelet 12(S)-LOX, which is capable of oxidizing a number of fatty acids. Depending on the fatty acid, the metabolite(s) produced by 12(S)-LOX have often been shown to impact platelet and vessel function in distinct ways and therefore are important regulators of platelet reactivity and inflammation. This chapter reviews the roles of 12(S)-LOX and its metabolites on platelet functions in thrombosis, hemostasis and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274

    Article  CAS  PubMed  Google Scholar 

  2. Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF (2012) Platelet signaling. Handb Exp Pharmacol 210:59–85

    Article  CAS  PubMed  Google Scholar 

  3. Morrell CN, Aggrey AA, Chapman LM, Modjeski KL (2014) Emerging roles for platelets as immune and inflammatory cells. Blood 123(18):2759–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11(2):123–134

    Article  CAS  PubMed  Google Scholar 

  5. Bambace NM, Holmes CE (2011) The platelet contribution to cancer progression. J Thromb Haemost 9(2):237–249

    Article  CAS  PubMed  Google Scholar 

  6. Huo Y, Ley KF (2004) Role of platelets in the development of atherosclerosis. Trends Cardiovasc Med 14(1):18–22

    Article  CAS  PubMed  Google Scholar 

  7. Lievens D, von Hundelshausen P (2011) Platelets in atherosclerosis. Thromb Haemost 106(5):827–838

    Article  CAS  PubMed  Google Scholar 

  8. Boilard E, Nigrovic PA, Larabee K et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Michou L, Cornelis F, Baron M et al (2013) Association study of the platelet collagen receptor glycoprotein VI gene with rheumatoid arthritis. Clin Exp Rheumatol 31(5):770–772

    PubMed  Google Scholar 

  10. Aslam R, Speck ER, Kim M et al (2006) Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 107(2):637–641

    Article  CAS  PubMed  Google Scholar 

  11. Hamberg M, Samuelsson B (1974) Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71(9):3400–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nugteren DH (1975) Arachidonate lipoxygenase in blood platelets. Biochim Biophys Acta 380(2):299–307

    Article  CAS  PubMed  Google Scholar 

  13. Burger F, Krieg P, Marks F, Furstenberger G (2000) Positional- and stereo-selectivity of fatty acid oxygenation catalysed by mouse (12S)-lipoxygenase isoenzymes. Biochem J 348(Pt 2):329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Kurre U, Jenkins N, Copeland N, Funk C (1994) cDNA cloning, expression, mutagenesis of C-terminal isoleucine, genomic structure, and chromosomal localizations of murine 12-lipoxygenases. J Biol Chem 269(19):13979–13987

    CAS  PubMed  Google Scholar 

  15. Michibayashi T (2005) Platelet aggregation and vasoconstriction related to platelet cyclooxygenase and 12-lipoxygenase pathways. J Atheroscler Thromb 12(3):154–162

    Article  CAS  PubMed  Google Scholar 

  16. Yu JY, Lee JJ, Jung JK et al (2012) Anti-platelet activity of diacetylated obovatol through regulating cyclooxygenase and lipoxygenase activities. Arch Pharm Res 35(12):2191–2198

    Article  CAS  PubMed  Google Scholar 

  17. Baba A, Sakuma S, Okamoto H, Inoue T, Iwata H (1989) Calcium induces membrane translocation of 12-lipoxygenase in rat platelets. J Biol Chem 264(27):15790–15795

    CAS  PubMed  Google Scholar 

  18. Stern N, Kisch ES, Knoll E (1996) Platelet lipoxygenase in spontaneously hypertensive rats. Hypertension 27(5):1149–1152

    Article  CAS  PubMed  Google Scholar 

  19. Katoh A, Ikeda H, Murohara T, Haramaki N, Ito H, Imaizumi T (1998) Platelet-derived 12-hydroxyeicosatetraenoic acid plays an important role in mediating canine coronary thrombosis by regulating platelet glycoprotein IIb/IIIa activation. Circulation 98(25):2891–2898

    Article  CAS  PubMed  Google Scholar 

  20. Ikei KN, Yeung J, Apopa PL et al (2012) Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation. J Lipid Res 53(12):2546–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ivanov I, Heydeck D, Hofheinz K et al (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys 503(2):161–174

    Article  CAS  PubMed  Google Scholar 

  22. Sutherland M, Shankaranarayanan P, Schewe T, Nigam S (2001) Evidence for the presence of phospholipid hydroperoxide glutathione peroxidase in human platelets: implications for its involvement in the regulatory network of the 12-lipoxygenase pathway of arachidonic acid metabolism. Biochem J 353(Pt 1):91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ozeki Y, Nagamura Y, Ito H et al (1999) An anti-platelet agent, OPC-29030, inhibits translocation of 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid production in human platelets. Br J Pharmacol 128(8):1699–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coffey MJ, Jarvis GE, Gibbins JM et al (2004) Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis. Circ Res 94(12):1598–1605

    Article  CAS  PubMed  Google Scholar 

  25. Morgan LT, Thomas CP, Kuhn H, O'Donnell VB (2010) Thrombin-activated human platelets acutely generate oxidized docosahexaenoic-acid-containing phospholipids via 12-lipoxygenase. Biochem J 431(1):141–148

    Article  CAS  PubMed  Google Scholar 

  26. Reed K, Tucker D, Aloulou A et al (2011) Functional characterization of mutations in inherited human cPLA‚ÇÇ deficiency. Biochemistry 50(10):1731–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adler DH, Cogan JD, Phillips JA 3rd et al (2008) Inherited human cPLA(2alpha) deficiency is associated with impaired eicosanoid biosynthesis, small intestinal ulceration, and platelet dysfunction. J Clin Invest 118(6):2121–2131

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong DA, Kita Y, Uozumi N, Shimizu T (2002) Discrete role for cytosolic phospholipase A(2)alpha in platelets: studies using single and double mutant mice of cytosolic and group IIA secretory phospholipase A(2). J Exp Med 196(3):349–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schafer A (1982) Deficiency of platelet lipoxygenase activity in myeloproliferative disorders. N Engl J Med 306(7):381–386

    Article  CAS  PubMed  Google Scholar 

  30. Okuma M, Kanaji K, Ushikubi F et al (1989) Reduced 12-lipoxygenase activity in platelets of patients with myeloproliferative disorders. Adv Prostaglandin Thromboxane Leukot Res 19:148–151

    CAS  PubMed  Google Scholar 

  31. Matsuda S, Murakami J, Yamamoto Y et al (1993) Decreased messenger RNA of arachidonate 12-lipoxygenase in platelets of patients with myeloproliferative disorders. Biochim Biophys Acta 1180(3):243–249

    Article  CAS  PubMed  Google Scholar 

  32. Nyby MD, Sasaki M, Ideguchi Y et al (1996) Platelet lipoxygenase inhibitors attenuate thrombin- and thromboxane mimetic-induced intracellular calcium mobilization and platelet aggregation. J Pharmacol Exp Ther 278(2):503–509

    CAS  PubMed  Google Scholar 

  33. Yeung J, Apopa PL, Vesci J et al (2013) 12-lipoxygenase activity plays an important role in PAR4 and GPVI-mediated platelet reactivity. Thromb Haemost 110(3):569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Svensson Holm AC, Grenegard M, Ollinger K, Lindstrom EG (2014) Inhibition of 12-lipoxygenase reduces platelet activation and prevents their mitogenic function. Platelets 25(2):111–117

    Article  CAS  PubMed  Google Scholar 

  35. Yeung J, Tourdot BE, Fernandez-Perez P et al (2014) Platelet 12-LOX is essential for FcgammaRIIa-mediated platelet activation. Blood 124:2271–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yeung J, Holinstat M (2011) 12-lipoxygenase: a potential target for novel anti-platelet therapeutics. Cardiovasc Hematol Agents Med Chem 9(3):154–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kenyon V, Rai G, Jadhav A et al (2011) Discovery of potent and selective inhibitors of human platelet-type 12-lipoxygenase. J Med Chem 54(15):5485–5497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luci DK, Jameson JB 2nd, Yasgar A et al (2014) Synthesis and structure-activity relationship studies of 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase. J Med Chem 57(2):495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnson EN, Brass LF, Funk CD (1998) Increased platelet sensitivity to ADP in mice lacking platelet-type 12-lipoxygenase. Proc Natl Acad Sci USA 95(6):3100–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yeung J, Apopa P, Vesci J et al (2012) Protein kinase C regulation of 12-lipoxygenase-mediated human platelet activation. Mol Pharmacol 81(3):420–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ozeki Y, Ito H, Nagamura Y, Unemi F, Igawa T (1998) 12(S)-HETE plays a role as a mediator of expression of platelet CD62 (P-selectin). Platelets 9(5):297–302

    Article  CAS  PubMed  Google Scholar 

  42. Holinstat M, Boutaud O, Apopa P et al (2011) Protease-activated receptor signaling in platelets activates cytosolic phospholipase A2α differently for cyclooxygenase-1 and 12-lipoxygenase catalysis. Arterioscler Thromb Vasc Biol 31(2):435–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burzaco J, Conde M, Parada LA, Zugaza JL, Dehaye JP, Marino A (2013) ATP antagonizes thrombin-induced signal transduction through 12(S)-HETE and cAMP. PLoS One 8(6):e67117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sekiya F, Takagi J, Usui T et al (1991) 12S-hydroxyeicosatetraenoic acid plays a central role in the regulation of platelet activation. Biochem Biophys Res Commun 179(1):345–351

    Article  CAS  PubMed  Google Scholar 

  45. Calzada C, Vericel E, Lagarde M (1997) Low concentrations of lipid hydroperoxides prime human platelet aggregation specifically via cyclo-oxygenase activation. Biochem J 325(Pt 2):495–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takenaga M, Hirai A, Terano T, Tamura Y, Kitagawa H, Yoshida S (1986) Comparison of the in vitro effect of eicosapentaenoic acid (EPA)-derived lipoxygenase metabolites on human platelet function with those of arachidonic acid. Thromb Res 41(3):373–384

    Article  CAS  PubMed  Google Scholar 

  47. Aharony D, Smith JB, Silver MJ (1982) Regulation of arachidonate-induced platelet aggregation by the lipoxygenase product, 12-hydroperoxyeicosatetraenoic acid. Biochim Biophys Acta 718(2):193–200

    Article  CAS  PubMed  Google Scholar 

  48. Sekiya F, Takagi J, Sasaki K et al (1990) Feedback regulation of platelet function by 12S-hydroxyeicosatetraenoic acid: inhibition of arachidonic acid liberation from phospholipids. Biochim Biophys Acta 1044(1):165–168

    Article  CAS  PubMed  Google Scholar 

  49. Setty BN, Werner MH, Hannun YA, Stuart MJ (1992) 15-hydroxyeicosatetraenoic acid-mediated potentiation of thrombin-induced platelet functions occurs via enhanced production of phosphoinositide-derived second messengers—sn-1,2-diacylglycerol and inositol-1,4,5-trisphosphate. Blood 80(11):2765–2773

    CAS  PubMed  Google Scholar 

  50. Chang J, Blazek E, Kreft AF, Lewis AJ (1985) Inhibition of platelet and neutrophil phospholipase A2 by hydroxyeicosatetraenoic acids (HETES). A novel pharmacological mechanism for regulating free fatty acid release. Biochem Pharmacol 34(9):1571–1575

    Article  CAS  PubMed  Google Scholar 

  51. Fonlupt P, Croset M, Lagarde M (1991) 12-HETE inhibits the binding of PGH2/TXA2 receptor ligands in human platelets. Thromb Res 63(2):239–248

    Article  CAS  PubMed  Google Scholar 

  52. Siegel MI, McConnell RT, Abrahams SL, Porter NA, Cuatrecasas P (1979) Regulation of arachidonate metabolism via lipoxygenase and cyclo-oxygenase by 12-HPETE, the product of human platelet lipoxygenase. Biochem Biophys Res Commun 89(4):1273–1280

    Article  CAS  PubMed  Google Scholar 

  53. Morita I, Takahashi R, Saito Y, Murota S (1983) Stimulation of eicosapentaenoic acid metabolism in washed human platelets by 12-hydroperoxyeicosatetraenoic acid. J Biol Chem 258(17):10197–10199

    CAS  PubMed  Google Scholar 

  54. Calzada C, Vericel E, Mitel B, Coulon L, Lagarde M (2001) 12(S)-hydroperoxy-eicosatetraenoic acid increases arachidonic acid availability in collagen-primed platelets. J Lipid Res 42(9):1467–1473

    CAS  PubMed  Google Scholar 

  55. Guo Y, Zhang W, Giroux C et al (2011) Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J Biol Chem 286(39):33832–33840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hampson AJ, Grimaldi M (2002) 12-hydroxyeicosatetrenoate (12-HETE) attenuates AMPA receptor-mediated neurotoxicity: evidence for a G-protein-coupled HETE receptor. J Neurosci 22(1):257–264

    CAS  PubMed  Google Scholar 

  57. Thomas CP, Morgan LT, Maskrey BH et al (2010) Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 285(10):6891–6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morgan A, Dioszeghy V, Maskrey B et al (2009) Phosphatidylethanolamine-esterified eicosanoids in the mouse: tissue localization and inflammation-dependent formation in Th-2 disease. J Biol Chem 284(32):21185–21191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Faraci FM, Sobey CG, Chrissobolis S, Lund DD, Heistad DD, Weintraub NL (2001) Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K(+) channels. Am J Physiol Regul Integr Comp Physiol 281(1):R246–253

    CAS  PubMed  Google Scholar 

  60. Turner SR, Tainer JA, Lynn WS (1975) Biogenesis of chemotactic molecules by the arachidonate lipoxygenase system of platelets. Nature 257(5528):680–681

    Article  CAS  PubMed  Google Scholar 

  61. Palmer RM, Stepney RJ, Higgs GA, Eakins KE (1980) Chemokinetic activity of arachidonic and lipoxygenase products on leuocyctes of different species. Prostaglandins 20(2):411–418

    Article  CAS  PubMed  Google Scholar 

  62. Sultana C, Shen Y, Rattan V, Kalra VK (1996) Lipoxygenase metabolites induced expression of adhesion molecules and transendothelial migration of monocyte-like HL-60 cells is linked to protein kinase C activation. J Cell Physiol 167(3):477–487

    Article  CAS  PubMed  Google Scholar 

  63. Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL (2011) Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 50(1):115–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bunce PE, High SM, Nadjafi M, Stanley K, Liles WC, Christian MD (2011) Pandemic H1N1 influenza infection and vascular thrombosis. Clin Infect Dis 52(2):e14–17

    Article  PubMed  Google Scholar 

  65. Boilard E, Pare G, Rousseau M et al (2014) Influenza virus H1N1 activates platelets through FcgammaRIIA signaling and thrombin generation. Blood 123(18):2854–2863

    Article  CAS  PubMed  Google Scholar 

  66. Manolakis A, Kapsoritakis AN, Potamianos SP (2007) A review of the postulated mechanisms concerning the association of Helicobacter pylori with ischemic heart disease. Helicobacter 12(4):287–297

    Article  PubMed  Google Scholar 

  67. Corcoran PA, Atherton JC, Kerrigan SW et al (2007) The effect of different strains of Helicobacter pylori on platelet aggregation. Can J Gastroenterol 21(6):367–370

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wassermann GE, Olivera-Severo D, Uberti AF, Carlini CR (2010) Helicobacter pylori urease activates blood platelets through a lipoxygenase-mediated pathway. J Cell Mol Med 14(7):2025–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126

    Article  CAS  PubMed  Google Scholar 

  70. Nakao J, Ito H, Chang WC, Koshihara Y, Murota S (1983) Aortic smooth muscle cell migration caused by platelet-derived growth factor is mediated by lipoxygenase product(s) of arachidonic acid. Biochem Biophys Res Commun 112(3):866–871

    Article  CAS  PubMed  Google Scholar 

  71. Nakao J, Ooyama T, Ito H, Chang WC, Murota S (1982) Comparative effect of lipoxygenase products of arachidonic acid on rat aortic smooth muscle cell migration. Atherosclerosis 44(3):339–342

    Article  CAS  PubMed  Google Scholar 

  72. Preston IR, Hill NS, Warburton RR, Fanburg BL (2006) Role of 12-lipoxygenase in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 290(2):L367–374

    Article  CAS  PubMed  Google Scholar 

  73. Nieves D, Moreno JJ (2008) Enantioselective effect of 12(S)-hydroxyeicosatetraenoic acid on 3T6 fibroblast growth through ERK 1/2 and p38 MAPK pathways and cyclin D1 activation. Biochem Pharmacol 76(5):654–661

    Article  CAS  PubMed  Google Scholar 

  74. Walenga RW, Boone S, Stuart MJ (1987) Analysis of blood HETE levels by selected ion monitoring with ricinoleic acid as the internal standard. Prostaglandins 34(5):733–748

    Article  CAS  PubMed  Google Scholar 

  75. Vijil C, Hermansson C, Jeppsson A, Bergstrom G, Hulten LM (2014) Arachidonate 15-lipoxygenase enzyme products increase platelet aggregation and thrombin generation. PLoS One 9(2):e88546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Maclouf J (1993) Transcellular biosynthesis of arachidonic acid metabolites: from in vitro investigations to in vivo reality. Baillieres Clin Haematol 6(3):593–608

    Article  CAS  PubMed  Google Scholar 

  77. Marcus AJ, Hajjar DP (1993) Vascular transcellular signaling. J Lipid Res 34(12):2017–2031

    CAS  PubMed  Google Scholar 

  78. Brady HR, Papayianni A, Serhan CN (1994) Leukocyte adhesion promotes biosynthesis of lipoxygenase products by transcellular routes. Kidney Int Suppl 45:S90–97

    Article  CAS  PubMed  Google Scholar 

  79. Lindgren JA, Edenius C (1993) Transcellular biosynthesis of leukotrienes and lipoxins via leukotriene A4 transfer. Trends Pharmacol Sci 14(10):351–354

    Article  CAS  PubMed  Google Scholar 

  80. Fiore S, Ryeom SW, Weller PF, Serhan CN (1992) Lipoxin recognition sites. Specific binding of labeled lipoxin A4 with human neutrophils. J Biol Chem 267(23):16168–16176

    CAS  PubMed  Google Scholar 

  81. Romano M, Chen XS, Takahashi Y, Yamamoto S, Funk CD, Serhan CN (1993) Lipoxin synthase activity of human platelet 12-lipoxygenase. Biochem J 296(Pt 1):127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Serhan CN, Sheppard KA (1990) Lipoxin formation during human neutrophil-platelet interactions. Evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro. J Clin Invest 85(3):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weber PC, Fischer S (1984) Arachidonic acid and eicosapentaenoic acid metabolism in platelets and vessel walls. Med Biol 62(2):129

    CAS  PubMed  Google Scholar 

  84. Serhan CN, Romano M (1995) Lipoxin biosynthesis and actions: role of the human platelet LX-synthase. J Lipid Mediat Cell Signal 12(2–3):293–306

    Article  CAS  PubMed  Google Scholar 

  85. Freire-Moar J, Alavi-Nassab A, Ng M, Mulkins M, Sigal E (1995) Cloning and characterization of a murine macrophage lipoxygenase. Biochim Biophys Acta 1254(1):112–116

    Article  PubMed  Google Scholar 

  86. Berger M, Schwarz K, Thiele H et al (1998) Simultaneous expression of leukocyte-type 12-lipoxygenase and reticulocyte-type 15-lipoxygenase in rabbits. J Mol Biol 278(5):935–948

    Article  CAS  PubMed  Google Scholar 

  87. Fleming J, Thiele BJ, Chester J et al (1989) The complete sequence of the rabbit erythroid cell-specific 15-lipoxygenase mRNA: comparison of the predicted amino acid sequence of the erythrocyte lipoxygenase with other lipoxygenases. Gene 79(1):181–188

    Article  CAS  PubMed  Google Scholar 

  88. Dadaian M, Westlund P (1999) Albumin modifies the metabolism of hydroxyeicosatetraenoic acids via 12-lipoxygenase in human platelets. J Lipid Res 40(5):940–947

    CAS  PubMed  Google Scholar 

  89. Westlund P, Palmblad J, Falck JR, Lumin S (1991) Synthesis, structural identification and biological activity of 11,12-dihydroxyeicosatetraenoic acids formed in human platelets. Biochim Biophys Acta 1081(3):301–307

    Article  CAS  PubMed  Google Scholar 

  90. Maclouf J, Kindahl H, Granstrom E, Samuelsson B (1980) Interactions of prostaglandin H2 and thromboxane A2 with human serum albumin. Eur J Biochem 109(2):561–566

    Article  CAS  PubMed  Google Scholar 

  91. Fitzpatrick FA, Morton DR, Wynalda MA (1982) Albumin stabilizes leukotriene A4. J Biol Chem 257(9):4680–4683

    CAS  PubMed  Google Scholar 

  92. Flohé L (1989) Glutathione: chemical, biochemical, and medical aspects (Dolphin, David.; Avramovi, Olga.; Poulson, Rozanne.). Wiley, New York

    Google Scholar 

  93. Marshall PJ, Kulmacz RJ, Lands WE (1987) Constraints on prostaglandin biosynthesis in tissues. J Biol Chem 262(8):3510–3517

    CAS  PubMed  Google Scholar 

  94. Ludwig P, Holzhutter HG, Colosimo A, Silvestrini MC, Schewe T, Rapoport SM (1987) A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes. Eur J Biochem 168(2):325–337

    Article  CAS  PubMed  Google Scholar 

  95. Hecker G, Utz J, Kupferschmidt RJ, Ullrich V (1991) Low levels of hydrogen peroxide enhance platelet aggregation by cyclooxygenase activation. Eicosanoids 4(2):107–113

    CAS  PubMed  Google Scholar 

  96. Schewe T, Rapoport SM, Kuhn H (1986) Enzymology and physiology of reticulocyte lipoxygenase: comparison with other lipoxygenases. Adv Enzymol Relat Areas Mol Biol 58:191–272

    CAS  PubMed  Google Scholar 

  97. Yamamoto S, Suzuki H, Ueda N (1997) Arachidonate 12-lipoxygenases. Prog Lipid Res 36(1):23–41

    Article  CAS  PubMed  Google Scholar 

  98. Honn KV, Tang DG, Gao X et al (1994) 12-lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev 13(3–4):365–396

    Article  CAS  PubMed  Google Scholar 

  99. Pace-Asciak CR (1994) Hepoxilins: a review on their cellular actions. Biochim Biophys Acta 1215(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  100. Lin Z, Laneuville O, Pace-Asciak CR (1991) Hepoxilin A3 induces heat shock protein (HSP72) expression in human neutrophils. Biochem Biophys Res Commun 179(1):52–56

    Article  CAS  PubMed  Google Scholar 

  101. Jacquier-Sarlin MR, Fuller K, Dinh-Xuan AT, Richard MJ, Polla BS (1994) Protective effects of hsp70 in inflammation. Experientia 50(11–12):1031–1038

    Article  CAS  PubMed  Google Scholar 

  102. Larson MK, Shearer GC, Ashmore JH et al (2011) Omega-3 fatty acids modulate collagen signaling in human platelets. Prostaglandins Leukot Essent Fatty Acids 84(3–4):93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. von Schacky C, Fischer S, Weber PC (1985) Long-term effects of dietary marine omega-3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans. J Clin Invest 76(4):1626–1631

    Article  Google Scholar 

  104. Boberg M, Vessby B, Selinus I (1986) Effects of dietary supplementation with n-6 and n-3 long-chain polyunsaturated fatty acids on serum lipoproteins and platelet function in hypertriglyceridaemic patients. Acta Med Scand 220(2):153–160

    Article  CAS  PubMed  Google Scholar 

  105. Marra F, Riccardi D, Melani L et al (1998) Effects of supplementation with unsaturated fatty acids on plasma and membrane lipid composition and platelet function in patients with cirrhosis and defective aggregation. J Hepatol 28(4):654–661

    Article  CAS  PubMed  Google Scholar 

  106. Dyerberg J, Bang HO (1979) Haemostatic function and platelet polyunsaturated fatty acids in Eskimos. Lancet 2(8140):433–435

    Article  CAS  PubMed  Google Scholar 

  107. Knauss HJ, Sheffner AL (1967) Effect of unsaturated fatty acid supplements upon mortality and clotting parameters in rats fed thrombogenic diets. J Nutr 93(3):393–400

    CAS  PubMed  Google Scholar 

  108. Tamura Y, Hirai A, Terano T et al (1986) Clinical and epidemiological studies of eicosapentaenoic acid (EPA) in Japan. Prog Lipid Res 25(1–4):461–466

    Article  CAS  PubMed  Google Scholar 

  109. Lorenz R, Spengler U, Fischer S, Duhm J, Weber PC (1983) Platelet function, thromboxane formation and blood pressure control during supplementation of the Western diet with cod liver oil. Circulation 67(3):504–511

    Article  CAS  PubMed  Google Scholar 

  110. Siess W, Roth P, Scherer B, Kurzmann I, Bohlig B, Weber PC (1980) Platelet-membrane fatty acids, platelet aggregation, and thromboxane formation during a mackerel diet. Lancet 1(8166):441–444

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Holinstat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holinstat, M., Niisuke, K., Tourdot, B.E. (2016). Platelets and Lipoxygenases. In: Steinhilber, D. (eds) Lipoxygenases in Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-27766-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27766-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27764-6

  • Online ISBN: 978-3-319-27766-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics